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A digital microfluidic biochip (DMFB) is an attractive technology platform for various biomedical applica-

tions. However, a conventional DMFB is limited by: (i) the number of electrical connections that can be prac-

tically realized, (ii) constraints on droplet size and volume, and (iii) the need for special fabrication processes

and the associated reliability/yield concerns. To overcome the above challenges, DMFBs based on a micro-

electrode-dot-array (MEDA) architecture have been proposed and fabricated recently. Error recovery is of key

interest for MEDA biochips due to the need for system reliability. Errors are likely to occur during droplet

manipulation due to defects, chip degradation, and the uncertainty inherent in biochemical experiments. In

this paper, we first formalize error-recovery objectives, and then synthesize optimal error-recovery protocols

using a model based on Stochastic Multiplayer Games (SMGs). We also present a global error-recovery tech-

nique that can update the schedule of fluidic operations in an adaptive manner. Using three representative

real-life bioassays, we show that the proposed approach can effectively reduce the bioassay completion time

and increase the probability of success for error recovery.
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1 INTRODUCTION

Digital microfluidics enables the manipulation of droplets of picoliter volumes under program
control based on the principle of electrowetting-on-dielectric (EWOD) [10]. Digital microfluidic
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Fig. 1. Illustration of the MEDA architecture and microelectrode cell (μ-electrode cell) [16].

biochips (DMFBs) are revolutionizing point-of-care diagnostics [20], high-throughput DNA se-
quencing [23], drug discovery [2], and environmental toxicity monitoring [6]. However, today’s
DMFBs suffer from several limitations, mainly: (i) inability to vary droplet volume in a fine-grained
manner, (ii) the lack of integrated sensors for real-time detection, and (iii) the need for special fab-
rication processes and the associated reliability/yield concerns. To overcome the above limitations,
a micro-electrode-dot-array (MEDA) architecture has been proposed recently [7, 12, 13]. MEDA is
based on the concept of a sea-of-micro-electrodes with an array of identical basic microfluidic unit
components called microelectrode cells (MCs) [12], as illustrated in Figure 1. Each MC consists of
a microelectrode and a control/sensing circuit. MEDA allows microelectrodes to be dynamically
grouped under program control to form a micro-component (e.g., mixer or diluter) that can per-
form different microfluidic operations on the chip. Prototypes of MEDA-based biochips have been
fabricated using TSMC 0.35 μm CMOS technology.

A major obstacle that impedes reliable microfluidic operations on MEDA biochips is the lack
of adaptive and efficient techniques that can facilitate recovery from unexpected errors. Faults
in MEDA biochips may arise during bioassay execution. For example, excessive actuation volt-
age may lead to electrode breakdown and charge trapping [5], and DNA fouling may lead to the
malfunction of multiple electrodes in the biochip [21]. Such faults may eventually result in errors
(e.g., a splitting operation with unbalanced droplets), which can adversely impact the correctness
of fluidic operations.

In order to ensure robust fluidic operations and high confidence in the outcome of biochemical
experiments, error-recovery techniques have recently been proposed [8, 11, 17, 24]. Zhao et al. [24]
proposed an efficient control-path design method based on error-propagation estimates for fluidic
operations. Luo et al. [17] presented a cyberphysical approach that uses sensor data at intermediate
checkpoints to dynamically reconfigure the biochip. Jaress et al. [11] proposed a roll-back-based
error-recovery technique that leverages a virtual topology to quickly obtain resynthesis results.

All the above techniques are targeted at conventional DMFBs, therefore they can not fully ex-
ploit the advantages specific to MEDA-based biochips (e.g., real-time droplet sensing). For MEDA
biochips, Li et al. [15] recently presented an error-recovery strategy based on local adaptation (i.e.,
“local recovery”), and analyzed it using probabilistic timed automata (PTA). A control flow was
also proposed to connect local recoveries with global recovery. However, despite its benefits, this
method has several shortcomings:
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• It uses static error-recovery protocols for local errors, i.e., the error-recovery protocols are
identical for the same type of errors irrespective of when or where on the chip they occur.
This approach is not efficient for minimizing the recovery overhead, e.g., sample cost and
chip-area impact.

• The solution in [15] makes an unrealistic assumption that resources are always available for
local recovery, e.g., there is always a sufficient number of fluidic modules for re-execution
of operations. In practice, however, the available resources must be considered in making
decisions about local recovery.

• In [15], the same recovery time is assigned for each operation, which is not efficient in
minimizing the time spent on error recovery. The recovery-time assignment must consider
various factors, e.g., the type and the extent of detected errors, to determine the recovery
time for each detected local error.

• Finally, [15] uses all the assigned recovery time for local errors, and it does not consider the
likelihood that the local recovery can be successfully completed using less recovery time.
Thus, a more adaptive synthesis technique is needed to derive online synthesis results to
guide execution of the remaining microfluidic operations.

To overcome the above drawbacks, this paper advances error-recovery by exploring (i) a flexible
error-recovery solution derived using formal methods, and (ii) adaptive online synthesis based
on real-time sensing results. The proposed approach provides error tolerance with significantly
reduced recovery cost and higher probability of success. The main contributions of this paper
are:

• We model the error-recovery procedure using Markov decision processes (MDPs). We also
describe the platform as another MDP, composing a unified model using stochastic multi-
player games.

• We formalize the error-recovery objectives and use them to synthesize optimal error-
recovery protocols for local recovery. The system behaviors under the optimal protocols
are then analyzed.

• We describe an efficient method to determine available recovery resources for each detected
error. Based on the available resources, we dynamically assign the recovery time for differ-
ent local errors.

• We present an adaptive online synthesis flow to recompute new schedules, module place-
ments, and droplet routes on-the-fly in response to errors.

The rest of the paper is organized as follows. Section 2 presents an overview of MEDA biochips
and formal methods that are relevant to this work. In Section 3, we present the problem formulation
before describing the synthesis of error-recovery protocols for local errors in Section 4. Section 5
presents an adaptive online synthesis technique for global error recovery. Experimental results on
real-life benchmarks, as well as comparison with [15], are presented in Section 6. Finally, Section 7
concludes the paper.

2 PRELIMINARIES

In this section, we provide an overview of digital microfluidics and MEDA, as well as experimental
results that illustrate the need for probabilistic modeling of MEDA operations. We then provide an
introduction to the formal methods used for modeling, design and analysis of stochastic systems,
which are utilized for the synthesis of optimal error-recovery protocols in Section 4.
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Fig. 2. Sensing circuit in MEDA biochips [7].

2.1 Digital Microfluidics and MEDA

A DMFB is able to manipulate and move picoliter droplets containing biological samples on a two-
dimensional electrode array. MEDA extends this basic architecture by adding more flexibility [12].
Furthermore, the size of the microelectrodes can be 10 times smaller (e.g., 100 μm in length) than
conventional electrodes. The MEDA biochip consists of microelectrode cells (MCs). Each MC in-
cludes a microelectrode, an activation circuit, and a sensing circuit [13].

2.1.1 Sensing Scheme in MEDA. In contrast to conventional DMFBs, real-time sensing can be
achieved on MEDA biochips. MEDA biochips can detect the property (droplet-property sensing)
and the location (droplet-location sensing) of on-chip droplets. Sensing results are presented in the
form of a sensing map. Figure 2 shows the diagram of the sensing circuit in a MEDA biochip. The
parasitic capacitance with and without droplets between the top reference electrode and the bot-
tom microelectrode is defined asCDrop andCEmpty , respectively. During droplet-location sensing,
droplet precharge circuit first charges the parasitic capacitor. Transistor MN 1 is then turned on to
discharge the parasitic capacitor. Due to the difference between capacitances CDrop and CEmpty ,
INV outputs different voltage levels. Similar to droplet-location sensing, droplet-property sens-
ing utilizes the capacitance difference between different types of droplets to generate different
charging and discharging time.

Sensing on MEDA biochips can provide users with detailed information about the outcomes of
on-chip operations. Therefore, errors can be detected in real-time, and error-recovery techniques
can then be invoked for error correction.

2.1.2 Outcome Classification. As described in [15], the outcomes of fluidic operations can be
experimentally classified into three categories: minor error, major error, and no error. The classifi-
cation is based on the level of completeness (LOC) of an operation. The LOC measures the extent
to which an operation is complete within a pre-specified window, compared with the ideal case
(e.g., a uniform mixing and a balanced splitting), and it ranges between 0 and 1—a larger LOC
represents a higher degree of completeness. Here, we use formulas from [15] to calculate the LOC
for every operation.

To obtain outcome probabilities for mixing and splitting operations, we performed 100 mixing
and 100 splitting operations on a MEDA biochip. The corresponding LOC for each operation was
obtained and the distribution of LOCs for mixing and splitting operations are shown in Figure 3.
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Fig. 3. Experimental results for LOC distributions; P is the outcome probability for a 〈operation, category〉
pair.

Based on Figure 3, the probabilities that the outcome of a mixing operation is a major error, minor
error, and no error are 0.05, 0.13, and 0.82, respectively. Also, the probabilities that the outcome of
a splitting operation is a major error, minor error, and no error are 0.09, 0.23, and 0.68, respectively.

2.2 Formal Modeling of Stochastic Processes

2.2.1 Markov Decision Processes (MDPs). MDPs are a formalism widely used to model systems
that exhibit both stochastic and nondeterministic behaviors. MDPs are similar to Finite-State Ma-
chines, with standard guards, specifying the logical conditions that enable transitions [1], and
nondeterministic actions/events that can be used in addition to probabilistic transitions. Stochas-
tic behaviors capture scenarios when a system randomly, with predefined probability distributions,
evolves from one state to another [19]. In contrast, nondeterministic behavior means that the sys-
tem can evolve to the next state via any enabled transition, in a way that is unknown. Intuitively,
nondeterminism captures choices that a system (e.g., controller or environment) could make; in
every state, once a nondeterministic choice is made, the next state is selected in a probabilistic
manner, as in Discrete-Time Markov Chains (DTMC).

Formally, an MDP is specified as a tupleM = 〈S,A,δ , s0〉, where: (a) S is a finite set of states
and s0 ∈ S is the initial state; (b) A is a finite set of actions; and (c) δ : S × A × S → [0, 1] is a
transition probability function such that for all s ∈ S and α ∈ A, it holds

∑
s ′ ∈S δ (s,α , s ′) ∈ {0, 1}.

Note that if action α is enabled in s , no matter if it is active or inactive, the sum should be equal
to 1; otherwise, it is equal to 0. We use A (s ) ⊆ A to denote the set of enabled actions in s . For
any state s ∈ S, it is required that A (s ) � ∅. When there is more than one action available in
state s (i.e., |A (s ) | > 1), a nondeterministic choice should be made; on the other hand, if for all s
it holds that |A (s ) | ≤ 1, then the MDP is effectively a DTMC. The system evolution starts in s0.
At each step, the system moves from s to s ′ with probability δ (s,α , s ′) if there exists a transition

s
д:α
−−−→ s ′ such that the guard д holds and action a is active. Note that this transition is probabilistic

if δ (s,α , s ′) ∈ (0, 1) or deterministic if δ (s,α , s ′) = 1.

2.2.2 Model Composition. When modeling complex systems, it is more favorable to use a num-
ber of MDPs to capture the behavior of different system components instead of adopting a mono-
lithic approach. Model composition can then be used to merge those models after defining the syn-
chronization rules among them. LetM1 = 〈S1,A1,δ1, s1〉 andM2 = 〈S2,A2,δ2, s2〉 be two MDPs.
The parallel composition of the MDPs is defined as

M1 ‖ M2 = 〈S1 × S2,A1 × A2,δ , (s1, s2)〉.
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Intuitively, MDPs are composed by synchronizing on common actions (the probability function
is then the product of distributions for δ1 and δ2) and interleaving otherwise. In the former case,
MDPs can synchronize over channels. Here, a transmitter over a channel α (denoted by α !) must
synchronously execute with all receivers (denoted by α?) only if all guards associated with α are
satisfied. More about MDP semantics and composition can be found in [19].

2.2.3 Stochastic Multi-Player Games (SMGs). SMGs are similar to MDPs, where nondetermin-
istic choices are resolved by more than one entity, called players. SMGs facilitate modeling sys-
tems with more than one source of nondeterminism. Formally, an SMG is defined as a tuple
G = 〈ϒ, S,A,δ , s0〉, where: (a) ϒ is a finite set of players; (b) S is a finite set of states, partitioned
into disjoint set of states Sυ , υ ∈ ϒ; (c) A is a finite set of actions; (d) δ : S × A × S → [0, 1] is a
partial transition function; and (e) s0 ∈ S is the initial state. A state s ∈ Sυ is controlled by player υ,
i.e., the nondeterministic choices from s are controlled by υ. If s ∈ S0, then the next state is chosen
probabilistically. More details on SMGs can be found in [3].

2.2.4 Specifications. We use temporal logic to formally specify model properties that we
would like to analyze. Specifically, to express properties for SMGs we use rPATL—Probabilistic
Alternating-time Temporal logic with Rewards [3]. For instance, consider a game G where υ is a
player andφ is a predicate that is satisfied in some state s (i.e., s |= φ). Consider the rPATL formulas

ϕ1 � 〈〈υ〉〉δ≥q [♦φ] , ϕ2 � 〈〈υ〉〉Rr
≥x [♦φ] .

Formulaϕ1 asks ifυ can eventually reach a state s satisfying propertyφ (i.e., s |= φ) with probability
that is greater than or equal to q, while ϕ2 checks if the accumulated rewards (associated with
transitions and states) before reaching a state s satisfying φ (i.e., s |= φ) is greater than or equal
to x . Alternatively, the quantitative queries

〈〈υ〉〉δmax=? [♦φ] , 〈〈υ〉〉Rr
max=? [♦φ]

seek the maximal numerical values rather than assertions. More about specification semantics and
rPATL can be found in [3].

2.2.5 Strategies and Synthesis Problem. Given an SMG G, a strategy π is a set of rules to resolve
all nondeterministic choices of a player υ, reducing the model into an MDP Mπ . The synthesis
problem is an attempt to answer the following question: Given an SMG G and a specification ϕ,

find a strategy π for player υ such that for all opponents strategies σ , the induced DTMC satisfies the

specification—i.e., Gπ ,σ |= ϕ for all possible opponent strategies σ . More about strategy synthesis
can be found in [22].

3 PROBLEM FORMULATION

To map a bioassay to a MEDA biochip, synthesis techniques [14] are required to bind the assay
operation to on-chip resources and generate an optimized schedule of fluidic operations. The in-
put bioassay is modeled by a sequencing graph [10], which denotes the dependencies between
fluidic operations. As discussed in Section 1, errors may occur during the execution of bioassays
on a MEDA biochip. A MEDA biochip is said to have an error if its operation does not match
its specified behavior. In this work, we assume that chips have been carefully tested before they
can be used for bioassay execution, i.e., we assume that droplets will never be stuck during their
transportation and droplet dispensing can always be successfully achieved. However, some manu-
facturing defects may be latent, and they may produce errors during field operation [15]. Thus, we
focus on developing error-recovery approaches for online errors, i.e., mixing and splitting errors
during bioassay execution.
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Fig. 4. Relationship between local and global error recovery.

For a given bioassay, we use on-chip sensing to evaluate the quality of output droplets of
each mixing and splitting operation. Recall that MEDA can provide real-time sensing results for
on-chip operations, and thus the time required for outcome evaluation is negligible. Once an error
is detected, a local recovery approach is desired to recover from the error. Local recovery for a spe-
cific error refers to adaptation actions that are invoked to maximize probability of success for the
operation that was affected by that error. However, local error recovery requires extra chip area
and consumes time, which may result in a conflict with the original schedule [11]. Consequently,
we also focus on global error recovery to efficiently coordinate local-recovery procedures for the
complete bioassay. The focus of global recovery is on (i) dynamic assignment of resources used for
local recoveries, and (ii) generating new synthesis results (i.e., operation scheduling and module
placement) to reduce the interference between error-recovery procedures and bioassay execution.
The relationship between local and global error recovery is shown in Figure 4. The formal models
reviewed in Section 2, and described in more detail in Section 4, allow us to make informed
decisions about the local recovery procedures, and hence they also play a role in efficient global
recovery.

The objective of this work is to develop an error-recovery strategy that can minimize the im-
pact on bioassay completion time and maximize the probability of successful error recovery. The
strategy includes approaches for both local recovery (for erroneous operations) and global recov-
ery (for the complete bioassay). For local recovery, we introduce an optimal recovery approach
that maximizes the probability of successful recovery based on available resources. For global
recovery, we introduce an online synthesizer to seamlessly connect local recovery with global
recovery.

3.1 Strategy Overview

The proposed error-recovery strategy (Figure 5) contains two major components: (i) online
synthesizer, which is used to dynamically adjust operation scheduling and module placement,
and (ii) local error recovery model that, based on available resources, provides an optimal
local-recovery protocol. These components seamlessly coordinates with each other for the
implementation of the proposed error-recovery strategy on the hardware platform.
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Fig. 5. Overview of the proposed error-recovery strategy.

Fig. 6. Data flow structure of the error-recovery model.

Details of the error-recovery model and online synthesizer are presented in Section 4 and
Section 5, respectively. The error-recovery model is used offline to generate optimal error-recovery
protocols for any level of available resources. Then, all these optimal error-recovery protocols are
stored in a lookup table. At runtime, if an error is detected during the execution of a bioassay, the
online synthesizer first performs an analysis on available resources and then obtains the optimal
recovery protocol from the constructed lookup table. Finally, the online synthesizer dynamically
adjusts synthesis results to avoid interference between error-recovery protocols and the execution
of following operations.

4 MODELING AND SYNTHESIS OF LOCAL ERROR-RECOVERY PROTOCOLS

In this section, we introduce a method to design optimal error recovery protocols for any level of
available system resources (e.g., time for recovery, mixers). We start by constructing MDP models
of the error recovery process for various fluidic operations. These models, along with an abstracted
model of the platform, are obtained from the experimental data presented in Section 2.1, and then
integrated using model composition to obtain an SMG model of the system. Finally, we formalize
the error-recovery process objectives and use them to automatically synthesize optimal error-
recovery protocols.

4.1 Error-Recovery Model

Consider a bioassay that includes a combination of mixing, splitting and dilution operations.
Figure 6 shows the data flow structure of the error-recovery process, which forms the basis of our
formal model. The model captures the control execution as well as the probabilistic behavior of
the platform. When a bioassay operation is performed, the resource manager updates the amount
of resources that can be allocated for error recovery (i.e., available time rt ime , mixers rmix , and
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Fig. 7. Error-recovery model for mixing (Mmix ).

backup droplets rcbu ), while the platform provides the information about the operation outcome.
Based on this information, the error-recovery model identifies both optimal actions and resources
required to recover from the error.

4.1.1 Mixing Error-Recovery Model (Mmix ). We start by considering the error-recovery model
Mmix for mixing operations (Figure 7). Initially, the model moves to Check state, where the
process outcome is checked. This outcome falls into one of three categories as shown in Figure 3,
namely successful, unsuccessful with minor error or with major error, upon which the model
moves to the corresponding state. For successful outcome, the model returns to Start, signaling
the action doNothing. Otherwise, in Minor Error or Major Error states, four actions are available
to choose from.

The first three actions are to reuse both the same droplet and mixer (amix ), to move the droplet
to a new mixer (amov ), and to use a backup droplet to complete the operation (acbu ). Each of these
actions is guarded by the availability of the required resources, and further ensures that such
resources are consumed by synchronizing with the resources model (described in Section 4.1.4).
Depending on the selected action, the model progresses to Mix, Move or Call BU state, before
returning to Check by accordingly updating the variable action. The fourth action ar sc captures
rescheduling of the mixing operation, when the process aborts by moving from Fail to Start.

4.1.2 Splitting Error-Recovery Model (Msplit ). Similar to the mixing operation, an error-
recovery protocol for a splitting operation starts by reading its outcome. The process aborts by
moving from Check to Start states if the operation is successful. Otherwise, it moves to either
Minor Error or Major Error states, from which it can proceed with amerдe , ar eroute or ar sc actions
toMerдe ,Reroute or Schedule states, respectively. While actionsamerдe andar eroute request merg-
ing the defective droplets or rerouting to a new splitter before any further splitting attempts, the
action ar sc requests rescheduling. The variable action is used to store the decision made upon
synchronizing over return action.
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Fig. 8. Error-recovery model for splitting (Msplit ).

Table 1. List of Corrective Actions and Associated Costs

Resources Consumed
Operation Action Time Locations Droplets

Retry Mixing 2s 0 0
Mixing Move Droplet 2s 1 0

Call Backup 2s 0 1
Reschedule 0s 0 0
Merge 1s 0 0

Splitting Move Droplet 1s 1 0
Reschedule 0s 0 0

4.1.3 Dilution Error-Recovery Model. In a dilution operation, a droplet first undergoes a mixing
operation, after which it is split into two droplets. Hence, we construct the dilution error-recovery
modelMdilute asMmix followed byMsplit .

4.1.4 Resources Model. Each error-recovery action is associated with specific resource de-
mands, as shown in Table 1. We model these resources as DTMCs from Figure 9 with: Mt ime

tracking time through rt ime variable,Mmixers tracking the number of mixers rmix ,Mdrop track-
ing the number of backup droplets rcbu ,Mact Mix tracking current mixer condition throughmixer
variable, andMact Drp tracking current droplet condition droplet . All five variables are initialized
by receiving init action, triggered byMplat (Figure 10). These variables are also updated by one or
more of the actions amix , amov , acbu , amrд , and ar r t , triggered byMmix (as in Figure 7) orMsplit

(Figure 8). The action use, triggered byMplat (Figure 10, described in Section 4.1.5), marks the cur-
rent droplet and mixer as used by assigning the value isOld to both droplet and mixer variables,
while actions amov and acbu set the variables back to isNew .

4.1.5 Platform Model (Mplat ). Since our focus is on the local error-recovery process, it is
imperative that the system model captures two fundamental aspects—operation outcome and
resources availability. In a typical MEDA biochip, on-chip sensors provide real-time measurements
of a process outcome. Being unknown at design stage, we assume that the outcome follows a

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 127. Publication date: September 2017.



Synthesis of Error-Recovery Protocols for MEDA Digital Microfluidic Biochips 127:11

Fig. 9. Model of resources.

Fig. 10. Platform abstraction model (Mplat ).

uniform probability distribution, an assumption supported by the experimental results presented
in Section 2.1. Nevertheless, one limitation of the aforementioned results is that they only charac-
terize the outcome probability of an operation at its first attempt. Hence, in Table 2 we augment
these results with a model of how the error type of last trial and droplet and mixer conditions may
influence the outcome probability of a recovery operation, mostly due to mixer degradation as
discussed in [9, 18]. We assume that the probability of the outcome to be successful is the highest
when the droplet and mixer used are both new. Similar model is used for splitting operations.

Figure 10 shows the MDP Mplat that captures the probabilistic behavior of the platform
by abstracting the scheduler, controller, sensors and biochip. The model moves from Start to
Do Operation state when an operation is being processed. The transition from Do Operation to
Check is associated with the init action, which synchronizes with the resources model (from
Figure 9) to initialize the available resources. The transition exiting Check state is sampled from a
uniform distribution characterized by ps , pf 1 and pf 2. These probabilities, rather than being con-
stant, depend on the variables droplet , mixer , and err (from Table 2), where err denotes the last
type of error. Any of these three probabilistic transitions triggers the action use , marking both the
droplet and mixer as used, and assigns a new value to err .
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Table 2. Probability Distributions Over the Possible Outcomes of Mixing and Splitting Process.

Resource Previous Mixing Outcome Splitting Outcome
Droplet Mixer Outcome ps pf 1 pf 2 ps pf 1 pf 2

New New N/A 0.820 0.130 0.050 0.680 0.230 0.090
New Used minor error 0.656 0.248 0.096 0.408 0.426 0.166
New Used major error 0.164 0.232 0.604 0.204 0.224 0.572
Used New minor error 0.492 0.367 0.141 0.544 0.328 0.128
Used New major error 0.246 0.209 0.545 0.136 0.243 0.621
Used Used minor error 0.328 0.485 0.187 0.272 0.523 0.205
Used Used major error 0.082 0.255 0.663 0.068 0.262 0.670

Fig. 11. Synchronization model (Msync ).

If the sampled outcome leads to either Minor Error or Major Error , the model proceeds to
Error Recovery. The next state is defined according to the action defined by Mmix or Msplit

through the variable action. Any action other than rescheduling leads to Do Action state and sub-
sequently back to Do Operation state, where the operation is repeated after the corrective action
is done. In contrast, if action = doResch, the model moves to Reschedule state, which marks un-
successful attempt to recover from the error. On the other hand, if the sampled outcome leads
to Success, the operation ends. WhileMplat in Figure 10 models a single bioassay operation, for
a sequence of operations the model can be augmented with the grayed extension (Figure 10) to
execute in a loop parsing a list of operations.

4.2 Model Composition

The aforementioned models present the components and functionalities of a MEDA-based system.
The overall system model is obtained by composing those models along with a synchronization
modelMsync from Figure 11, to ensure a turn-based synchronization—i.e., that only one action
is triggered at a time. This is achieved using the variable player that indicates which model is
allowed to execute actions. In addition, all transitions of models capturing error-recovery process
(i.e.,Mmix andMsplit ) are guarded by player = erp, while all transitions of the platform model
Mplat are guarded by player = plat . All other models, capturing available resources, are reactive
as they do not trigger any actions, and thus none of the player-based global guards are needed.

As the error-recovery protocol is triggered after a platform error occurs, Msync is initialized
with player = plat , i.e.,Mplat progresses first. Whenever the platform model decides on the op-
eration (i.e., init is triggered—see Figure 10),Mplat is halted (i.e., player = erp). Then, depending
on the selected operation, eitherMmix orMsplit becomes active. Similarly, when an operation
either succeeds or fails (i.e., return is triggered—see Figure 7 and Figure 8), the control goes back
to the platform modelMplat .

The overall system model can be established through parallel composition. If initial values for
the resources are assumed to be fixed then only one source of nondeterminism exists, and hence
the system model is an MDP. However, synthesized protocols based on this assumption are only
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optimal for that specific number of available resources. We relax this assumption by allowing
Mplat to nondeterministically select the initial (i.e., available) resources. Thus, the overall system
model is an SMG, denoted by Gsys , and defined as

Gsys =Mplat ‖ Mmix ‖ Msplit ‖ Mt ime ‖ Mmixers

‖ Mdrop ‖ Mact Mix ‖ Mact Drp ‖ Msync .

Finally, the game is played between the error-recovery process, denoted by erp, and the platform,
denoted by plat .

4.3 Strategy Synthesis

In order to synthesize optimal strategies for error recovery, we use the composed SMG model
Gsys to find an error-recovery policy that satisfies a specification capturing the desired optimality
objective. We define the objective (i.e., specification) of the optimal protocol as follows: Given a

set of resources, find the recovery action that maximizes the probability that the process is eventually

successful. This objective can be formally expressed with the rPATL query [3]

ϕ � 〈〈erp〉〉 Pmax=? [ φ � ♦ Succeed ],

where ♦ is the temporal operator eventually. Hence, the synthesis problem aims to find the optimal
strategy π ∗ such that

Gπ ∗,σ
sys |= ϕ ∀σ ∈ Σ,

where Σ is the set of all possible opponent (i.e., platform) strategies. Although the query ϕ results
in a single value for Pmax , the synthesis problem seeks the strategy that maximizes the probability
P for every possible opponent strategy σ ∈ Σ, i.e., for every possible assigned resources, resulting
in an optimal error-recovery protocol.

We use PRISM-games [4] to implement Gsys along with the query ϕ. The maximum probability
of satisfying φ at state s can be found using value iteration algorithm [3], which is implemented
in PRISM-games. For the obtained optimal recovery policies, in Section 6.1 we investigate the
relationship between several attributes, such as the effect of resource availability on the probability
of success for these operations.

5 GLOBAL ERROR RECOVERY

The local error-recovery protocols, derived offline using the techniques from Section 4, depend on
the upper limit on the recovery time and the set of available resources that can be used for recovery.
However, to adaptively invoke error recovery for the bioassay, we need a global error-recovery
technique that can tackle two key problems. First, to determine an optimal error-recovery policy,
the local error recovery model must have knowledge of the available resources, e.g., the number
of fluidic modules and backup droplets, as well as the time available for recovery. Second, multiple
errors can occur at different locations on the chip at nearly the same time, and the error-recovery
procedures for these errors can be intertwined through resource sharing or droplet-path overlap.
Therefore, there is a need to dynamically generate new schedules and module placements for error
recovery and other bio-protocol-related operations, such that the adverse impact of error-recovery
procedures on protocol execution is minimized. In this section, we first describe how we determine
resource availability. Next, an online synthesis approach is presented to dynamically generate new
schedules and module placements in response to local-recovery decisions.
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5.1 Inputs to Local Error Recovery

Recall that the local error recovery requires information about the number of backup droplets, the
number of fluidic modules available, and the maximum allowable recovery time. We next describe
how these parameters are determined.

5.1.1 Available Backup Droplets. For a splitting or a dilution operation, if only one of its output
droplets is used as an input for an immediate successor, the other (redundant) droplet is referred to
as a backup droplet for possible error recovery. In addition, dispensing operations can be scheduled
for execution as early as possible and extra droplets can be stored on the biochip as backup. Unused
backup droplets are sent to the waste reservoir upon the completion of the bioassay.

The number of backup droplets available for an operation can be determined from the sequenc-
ing graph. In a sequencing graph, each node represents an operation. Let BU (Oi ) denote the num-
ber of backup droplets generated by operationOi . Suppose operationO j is an immediate successor
of the N operations denoted byO j1 ,O j2 , . . .O jN

. Then, the number of available backup droplets for
the operation O j is min(BU (O j1 ),BU (O j2 ), . . . ,BU (O jN

)), since operation O j requires one droplet
from each of its immediate predecessors.

5.1.2 Available Fluidic Modules. A fluidic module is a group of microelectrodes on a MEDA
biochip that can be configured to perform a type of operation (e.g., mixing). In order to determine
the number of fluidic modules available for local error recovery, we use a search algorithm based
on the notion of a forbidden set introduced in [16]. A forbidden set refers to a set of locations where
new fluidic modules cannot be placed.

If an error occurs for an operation, the algorithm attempts to place appropriate fluidic modules
on the biochip so that they can be used for local error recovery. The forbidden set is used to avoid
placement conflicts with other operations. This algorithm terminates when either (1) a total of
N fluidic modules are placed on the biochip, where N refers to the maximum number of fluidic
modules designated for use in local error recovery (determined by the local error-recovery model),
or (2) not enough space is available to place a fluidic module. When this algorithm terminates, it
provides the number and the locations of fluidic modules for local error recovery.

The pseudo-code for determining the number of fluidic modules is shown in Figure 12. The
parameter fluidic_modules is a container, which stores the placements of available fluidic modules
(line 1). According to the current module placement MP , we use the function getPlacementSet ( )
to obtain the set of available locations PS for a fluidic module (line 2). If PS is not empty, i.e.,
there is sufficient space to place a new fluidic module, the function findBestPlacement ( ) is used
to find the module placement MPnew with minimum cost (lines 3–4). The cost is defined as the
Manhattan distance [16] between the target fluidic module and the erroneous fluidic module. The
newly identified fluidic-module placement is stored in fluidic_modules (line 5). Next, we examine
the number of fluidic-module placements in the container: (1) if we already have N fluidic-module
placements, the search is stopped; (2) otherwise, the newly found fluidic-module placementMPnew

is added to the on-chip module placement set MP , and we continue the search for another fluidic-
module placement based on the updated MP (lines 6–9). Finally, when the search stops, we delete
the newly added fluidic module placements from MP (lines 12–14) and get the number and the
locations of fluidic modules from fluidic_modules (line 15). For a MEDA biochip with an M × N
microelectrode array, the computational complexity of this search algorithm is O (MN ).

5.1.3 Maximum Recovery Time. When more recovery time is available, additional error-
recovery operations can be executed and the probability of success will be correspondingly
higher. However, if excessive time is allowed for error recovery, there is increased risk that the
bioassay will miss the completion-time deadline. Therefore, it is important to assign a maximum
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Fig. 12. Pseudo-code for determining the number of available fluidic modules.

recovery time for the recovery procedure when an error occurs in an operation. Here, we utilize
the scheduler from [16] to generate 20 feasible schedules for the remaining operations by varying
the recovery time tr from 1 s to 20 s. As a result, we get 20 completion times corresponding to
these 20 schedules. Note that we set the upper limit of tr to 20 seconds, since there is no significant
increase in the probability of success for tr > 20 s for the range of laboratory bio-protocol that
we studied (as we illustrate in Section 6). Finally, the maximum recovery time t̂r for local error
recovery is equal to the maximum value of tr that satisfies the inequality T (tr ) ≤ T0 + ΔTmax ,
where T0 is the completion time of the bioassay when no error occurs, ΔTmax is the maximum
allowable increase in the completion time due to errors, and T (tr ) denotes the completion time
when tr time is allocated for the error recovery.

We evaluate the CPU time needed for global recovery for three bioassays described in Section 6.
The maximum time to generate a schedule for these bioassays is 0.05 s on an Intel Core i3 with a
3.7GHz CPU and 8GB memory; thus, generating 20 schedules requires 1 s. To speed up the search
for the maximum allowable recovery time, we use binary search to generate fewer schedules and
quickly find the largest value of tr that leads to an admissible schedule.

5.2 Online Synthesis

We now describe how online synthesis can be used to integrate local error recovery with global
error recovery, as shown in Figure 13. When a bioassay is mapped to the biochip, the completion-
time deadline is also specified by the user. If errors occur, the completion time of the bioassay will
be larger thanT0, so we useT0 + ΔTmax as an upper bound on the acceptable completion time. If the
completion timeT satisfies the conditionT ≤ T0 + ΔTmax , the bioassay is deemed to be successful;
otherwise, it fails.

We first generate an initial schedule and module placement. All operations are stored in the
operation queue in ascending order of start times and retrieved sequentially. Before executing
new operations, the controller of the MEDA biochip examines the status of all on-going local error
recoveries and: (1) if any local error-recovery procedure fails (e.g., the recovery time exceeds the
maximum allowable recovery time), the bioassay fails; (2) if a local error recovery finishes within
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Fig. 13. Online synthesis for global error recovery.

the maximum allowed recovery time, the schedule and module placement will be updated to carry
out the remaining operations as soon as possible.

Following this step, the controller on the MEDA biochip checks if there is any new error. If a
new error occurs, the controller determines the resources and time available for recovery from
that error, and obtain the optimal error-recovery policy generated by the techniques described in
Section 4. Note that these error-recovery policies are obtained offline (i.e., at design time) and stored in

a lookup table, and therefore no time is required for their computation at runtime. To accommodate
the obtained optimal error-recovery policy, the schedule is updated appropriately.

6 EXPERIMENTAL RESULTS

In this section, we first evaluate our local error-recovery approach by focusing on the composed
model from Section 4. Next, we demonstrate the effectiveness of our global error-recovery tech-
nique by presenting results of simulating our technique on three representative real-life bioassays.
Finally, using the same benchmarks, we compare our approach with the static protocol proposed
in [15], since the latter significantly outperforms other existing methods.

6.1 Model Analysis

Since the optimal synthesized strategy π ∗ resolves the nondeterminism of erp, the resulting game
Gπ ∗ is reduced to an MDP where platform controls the available resources. For a specific strategy

σ of platform, the game Gπ ∗,σ is reduced to a DTMC. Thus, we use the induced model to study the
system under the optimal policy.

To understand the impact of available resources on the error-recovery process, we run experi-
ments on Gπ ∗,σ where σ ∈ Σ and Σ is a set of finite plat strategies constructed by choosing a finite
set of values for each resource, namely

r init
t ime ∈ {0 : 2 : 20}, r init

mix ∈ {0 : 1 : 4}, r init
cbu ∈ {0, 1}. (1)

We can then obtain the expected success probability pmax under the optimal policy π ∗ and all
possible initial sets of available resources (r init

t ime , r
init
mix , r

init
cbu

). We formally describe the query as

pπ ∗,σ
max=? [ ♦ Succeed ] ∀σ ∈ Σ. (2)
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Fig. 14. Effect of resource availability for a mixing operation on its success probability under the optimal

error-recovery protocol.

The computational complexity of solving (2) is O (N 3
t N

3
mN 3

c ), where Nt , Nm and Nc are the number
of values for time units, mixers, and backup droplets, respectively (e.g., 11, 5 and 2 in (1)). For the
set of initial resources from (1), PRISM-games solved the query and computed the optimal local
error-recovery policy in 2.68s on an Intel Core i7 4.0GHz CPU. Recall that this computation is
performed only once offline. Figure 14 shows the obtained results, illustrating the effect of resource
availability on the probability that a mixing operation is successfully performed under the optimal
error-recovery protocol. The general trend shows that the more the resources available, the higher
the success probability is. Since the mixing process takes 2s to complete, time increments of 1s do
not result in change in probabilities. With the same available amount of time, the improvement in
probabilities between having (0 mixers, 0 droplets) and (3 mixers, 1 droplet) peaks when the time is
at least 4s (5.38%) then takes a downward trend as time is increased. The combination (4s, 2 mixers,
1 droplet) has the lowest time required to guarantee a success probability of at least 95%. If more
time is afforded, (6s, 2 mixers, 0 droplets) can guarantee approximately the same probability.

6.2 Benefits of the Dynamic Protocol

One significant advantage of our proposed dynamic recovery protocol over the static one from [15]
is the higher probability to recover from erroneous operations, especially those residing on the side
branches of a sequencing graph. The reason is that a static protocol follows a fixed policy to recover
from erroneous operations, failing to exploit the variance of time and other on-chip resources. On
the other hand, a dynamic protocol generates the optimal recovery policy based on the currently
available resources. To illustrate this, consider the bioassay protocol shown in Figure 15, which
has a long critical path (from D1 to S4) and a long side branch path (from D8 to M5). The schedule
of this particular bioassay when no error happens is shown in Figure 16(a). Here, the completion-
time deadline is 24s, which means the maximum allowed completion time increment Δtmax is 2s .
We discuss the following two cases:

(1) If an error occurs in the critical path (e.g., in M4). As shown in Figure 16(b), the maximum
recovery time t̂r for both the static and dynamic protocols is 2s. Within this period of
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Fig. 15. The sequencing graph of an example bioassay.

Fig. 16. The schedule when error (a) never occurs, (b) occurs in M4, (c) occurs in M7 using static protocol, (d)

occurs in M7 using dynamic protocol.

time, the probability of success for local recovery is 0.3 and 0.57 for the static and dynamic
protocols, respectively.

(2) If an error occurs in the side branch path (e.g., in M7). Since the static protocol relies on a
fixed policy, as shown in Figure 16(c), the maximum recovery time for M7 to recover from
an error is 2s, and the probability of success for error recovery remains 0.3. However, the
dynamic protocol examines the available time and other on-chip resources for error recov-
ery and generate the optimal error-recovery policy. Figure 16(d) shows that 8s are used to
recover M7, and the probability of success for error recovery significantly increases to 0.9.

6.3 Results for Bioassays

We evaluated the proposed global error-recovery method on three real-life benchmarks shown
in Figure 17, namely CEP, master-mix, and serial-dilution [9]. CEP is a combination of three small
bioassays: cell lysis, mRNA extraction and mRNA purification. The experimentally characterized
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Fig. 17. (a) CEP benchmark. (b) Master-mix benchmark. (c) Serial-dilution benchmark.

module library for MEDA is presented in [15]. The size of one electrode in a conventional DMFB
is equal to a 4 × 4 microelectrode array in MEDA biochips. Therefore, a 2 × 2 array in the MEDA
platform actually represents an 8 × 8 microelectrode array. We then set the chip size to be an
8 × 8 array.

The error-recovery capability of a MEDA-based biochip can be evaluated based on both the
bioassay completion time and probability of success (POS) when errors are detected. In our sim-
ulation, we randomly inject up to four errors into each benchmark and simulate 1000 execution
scenarios under each configuration. Then, we calculate the average completion time and probabil-
ity of success under different Δtmax , where Δtmax denotes the maximum allowed bioassay com-
pletion time increment. For example, if Δtmax is set to 10s and the completion time for a bioassay
without errors is 20s, then the bioassay completion-time deadline is 30s.

As shown in Figure 18, a larger Δtmax and a smaller number of inserted errors result in higher
probability of success for all three bioassays. Nevertheless, this comes at the cost of a slight increase
in the completion time. Therefore, a trade-off between the completion time and the probability of
success exists.

To compare the proposed dynamic protocol with the static one from [15], we simulate 1000
times per each number of errors from one to four, where the location at which the errors are in-
jected is randomized. We compare the completion time under the same probability of success, as
well as the probability of success under different ΔTmax — the results for both protocols are shown
in Figure 19. When only one error occurs, the dynamic protocol shows modest improvement. How-
ever, when two or more errors occur, it significantly outperforms the static protocol. Finally, from
the experimental data presented in Section 2.1, the probabilities of two or more errors occurring
in the CEP, master-mix, and serial-dilution benchmarks are 0.625, 0.947, and 0.986, respectively,
highlighting the need to employ the proposed dynamic error-recovery protocol.

7 DISCUSSION AND CONCLUSION

We have presented the first work that can automatically synthesize optimal error-recovery proto-
cols for MEDA biochips. We first model the error-recovery procedure using Markov Decision Pro-
cesses (MDPs). Along with the abstract model for the platform, we obtain a stochastic multi-player
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Fig. 18. The average completion time using the proposed dynamic error-recovery protocol for (a) CEP, (b)

master-mix, and (c) serial-dilution; the probability of success for (d) CEP, (e) master-mix, and (f) serial-

dilution.

Fig. 19. A comparison between the average completion time of the static protocol from [15] and the proposed

dynamic protocol for (a) CEP, (b) master-mix, (c) serial-dilution; and their POS for (d) CEP, (e) master-mix,

and (f) serial-dilution.

game (SMG)-based system model. We then formalize the error-recovery procedure objectives and
use them to generate optimal error-recovery protocols for local recovery. We also propose a global-
recovery technique to dynamically (i) assign resources for local recovery and (ii) generate new
synthesis results, i.e., operation-scheduling and module-placement results. Although the local re-
covery plans are optimal, the global scheduling policy is based on heuristics. As part of future work
we will focus on deriving more efficient scheduling algorithms. Finally, simulation results from
three real-life bioassays demonstrate the effectiveness of the proposed error-recovery technique.
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As a biochip ages, the probability that an error occurs in a fluidic operation is more likely to
increase over time. Hence, future work can extend the model such that the probability distribution
over possible outcomes is dynamically updated, potentially by gathering statistical data from the
biochip. In that case, online protocol synthesis can be useful to realize such implementation.

Furthermore, the life of a biochip can be prolonged if less error-recovery operations are ex-
ecuted. The objective of the error-recovery protocol can then be relaxed such that, in the early
stages of a bioassay, a number of minor errors are tolerated before performing any local error-
recovery attempt. Thus, a balance between minimizing the time required to complete a bioassay
and extending the life of the biochip can be achieved.
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