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Abstract— In this work, we synthesize collaboration protocols
for human-unmanned aerial vehicle (H-UAV) command and
control systems, where the human operator aids in securing the
UAV by intermittently performing geolocation tasks to confirm
its reported location. We first present a stochastic game-based
model for the system that accounts for both the operator and an
adversary capable of launching stealthy false-data injection at-
tacks, causing the UAV to deviate from its path. We also describe
a synthesis challenge due to the UAV’s hidden-information con-
straint. Next, we perform human experiments using a developed
RESCHU-SA testbed to recognize the geolocation strategies that
operators adopt. Furthermore, we deploy machine learning
techniques on the collected experimental data to predict the
correctness of a geolocation task at a given location based
on its geographical features. By representing the model as a
delayed-action game and formalizing the system objectives, we
utilize off-the-shelf model checkers to synthesize protocols for
the human-UAV coalition that satisfy these objectives. Finally,
we demonstrate the usefulness of the H-UAV protocol synthesis
through a case study where the protocols are experimentally
analyzed and further evaluated by human operators.

I. INTRODUCTION

Contrary to what the terminology may suggest, autono-

mous systems mostly involve human presence; from actively

engaging with the system to merely monitoring the system

status or intervening whenever necessary [1]. A typical

example is the human-unmanned aerial vehicle (H-UAV)

command and control system, where various deployed ap-

plications depend on having human operators responsible for

supervising a fleet of UAVs during a mission. The operator

performs various supervisory tasks including, for example,

updating mission goals, monitoring agent status, and adjust-

ing flight plans [2]. The operator can also be assigned pri-

mary tasks that are mission relevant, such as imagery tasks.

With the human presence, considering human factors be-

comes an essential part of the modeling and design of those

systems, for which several attempts have been introduced

in literature. The reliance on experimental data has been

proposed to model human-autonomy interactions in various

applications such as autonomous cars [3], [4], industrial [5],

[6] and social robotics [7]. Due to their ability to model reac-

tive systems, Markovian formalisms, e.g., Markov Decisions

Processes (MDPs) and stochastic games, were exploited for

the theoretical exploration of human-robot interactions [8].

On the other hand, UAV navigational systems have been

recently proven to be vulnerable to cyber and physical

attacks, such as false-data injection attacks that target GPS

receivers [9], [10], raising security concerns in this domain.

A number of studies have focused on attack detection via

sensor redundancy (e.g., [11–17]). Yet a class of these attacks
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can remain stealthy by introducing non-aggressive and in-

cremental deviations [17–20]. Although humans are likely to

surpass autonomy in such situations of high uncertainty [21],

no research has addressed the human role in ensuring the

security of H-UAV systems; such as, whether we can improve

the overall security guarantees by harnessing the human

power of inductive reasoning and the ability to provide

context and additional information to the system in real-time.

Hence, in this paper, we focus on synthesis of protocols for

H-UAV systems where the operator can intermittently per-

form geolocation tasks to aid in detection of possible attacks.

First, the system dynamics, operator geolocation task, and

the adversarial behavior are modeled using stochastic games.

By developing RESCHU-SA testbed, experiments were con-

ducted to understand operator strategies during geolocation

tasks. Next, we use machine learning to predict correctness

of a geolocation task at a given location. Note that in

security problems, the system (i.e., UAV) is not aware of

the information related to attacker’s actions, which presents a

significant synthesis challenge. Thus, we construct the model

as a delayed-action game, which allows for the use of off-the-

shelf tools (PRISM-games) to synthesize security-aware H-

UAV protocols; such protocols provide UAV path plans that

increase chances of attack detection. Moreover, the protocols

specify time instances at which the operator is advised

to perform a geolocation task, maximizing its correctness.

The formal synthesis of the advisory system guarantees a

limit to the workload level, in order to avoid performance

deterioration without compromising system security. Finally,

we present a case study where the synthesized protocols are

analyzed and subjectively evaluated by human operators.

The rest of this paper is organized as follows. Section II

provides a background on stochastic games and H-UAV

control systems before formulating the problem statement.

Section III presents the system modeling using stochastic

and delayed-action games, while Section IV describes the

experiments used to obtain model parameters. The protocol

synthesis framework is provided in Section V. Section VI

presents a case study where the synthesized protocols are

analyzed and evaluated. Finally, Section VII concludes the

paper and provides avenues for future work.

II. BACKGROUND AND PROBLEM STATEMENT

We start with the related background on stochastic games

and strategy synthesis, followed by the problem statement.

A. Stochastic Games

Stochastic multiplayer games (SMGs) can model reactive

systems with both stochastic and nondeterministic transi-

tions, where the latter are resolved by more than one player.

Stochasticity arises when the system evolution cannot be pre-

cisely predicted, yet a probabilistic profile can be assumed.
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