
Context-Aware Temporal Logic
for Probabilistic Systems

Mahmoud Elfar[0000−0002−5579−1255], Yu Wang[0000−0002−0431−1039], and
Miroslav Pajic[0000−0002−5357−0117]

Duke University, Durham NC 27708, USA
{mahmoud.elfar,yu.wang94,miroslav.pajic}@duke.edu

http://cpsl.pratt.duke.edu

Abstract. In this paper, we introduce the context-aware probabilistic
temporal logic (CAPTL) that provides an intuitive way to formalize
system requirements by a set of PCTL objectives with a context-based
priority structure. We formally present the syntax and semantics of
CAPTL and propose a synthesis algorithm for CAPTL requirements. We
also implement the algorithm based on the PRISM-games model checker.
Finally, we demonstrate the usage of CAPTL on two case studies: a
robotic task planning problem, and synthesizing error-resilient scheduler
for micro-electrode-dot-array digital microfluidic biochips.

Keywords: Markov-decision process, temporal logic, model checking,
probabilistic systems, synthesis

1 Introduction

The correct-by-design paradigm in Cyber-Physical Systems (CPS) has been a
central concept during the design phase of various system components. This
paradigm requires the abstraction of both the system behavior and the design
requirements [22,23]. Typically, the system behavior is modeled as a discrete
Kripke structure, with nondeterministic transitions representing various actions
or choices that need to be resolved. In systems where probabilistic behavior is
prevalent, formalisms such as Markov decision processes (MDPs) are best suited.
The applications of correct-by-design synthesis paradigm span CPS fields such as
robot path and behavior planning [6,18], smart power grids [24], safety-critical
medical devices [15], and autonomous vehicles [25].

Temporal logic (TL) can be utilized to formalize CPS design requirements.
For example, Linear Temporal Logic (LTL) [2] is used to capture safety and
reachability requirements over Boolean predicates defined over the state space.
Similarly, computation tree logic (CTL) [2] allows for expressing requirements
over all computations branching from a given state. Probabilistic computation
tree logic (PCTL) can be viewed as a probabilistic variation of CTL to reason
about the satisfaction probabilities of temporal requirements.

The choice of which TL to use is both a science and an art. Nevertheless,
fundamental factors include expressiveness (i.e., whether the design requirements

http://cpsl.pratt.duke.edu

2 M. Elfar et al.

of interest can be expressed by the logic), and the existence of model checkers
that can verify the system model against the design requirement, synthesize
winning strategies, or generate counterexamples. Although prevalent TLs can be
inherently expressive, two notions are oftentimes overlooked, namely, how easy it
is to correctly formalize the design requirements, and whether existing model
checkers are optimized for such requirements. The more complex it becomes to
formalize a given requirement, the more likely it is that human error is introduced
in the process.

In particular, we focus in this paper on requirements that are naturally
specified as a set of various objectives with an underlying priority structure. For
instance, the objective of an embedded controller might be focused on achieving
a primary task. However, whenever the chances of achieving such task fall below
a certain threshold, the controller shall proceed with a fail-safe procedure. Such
requirement, while being easy to state and understand, can prove challenging
when formalized for two reasons. First, multiple objectives might be involved
with a priority structure, i.e., one objective takes priority over another. Second,
the context upon which the objectives are switched is of probabilistic nature, i.e.,
it requires the ability to prioritize objectives based on probabilistic invariants.

To this end, in this work we consider the problem of modeling and synthesis
of CPS modeled as MDPs, with context-based probabilistic requirements, where
a context is defined over probabilistic conditions. We tackle this problem by
introducing the context-aware probabilistic temporal logic (CAPTL). CAPTL
provides intuitive means to formalize design requirements as a set of objectives
with a priority structure. For example, a requirement can be defined in terms of
primary and secondary objectives, where switching from the former to the latter
is based upon a probabilistic condition (i.e., a context). The ability to define
context as probabilistic conditions sets CAPTL apart from similar TLs.

In addition to providing the syntax and semantics of CAPTL for MDPs,
we investigate the problem of synthesizing winning strategies based on CAPTL
requirements. Next, we demonstrate how the synthesis problem can be reduced to
a set of PCTL-based synthesis sub-problems. Moreover, for deterministic CAPTL
requirements with persistence objectives, we propose an optimized synthesis
algorithm. Finally, we implement the algorithm on top of PRISM-games [19],
and we show experimental results for two case studies where we synthesize a
robotic task planner, and an error-resilient scheduler for microfluidic biochips.

The rest of this section discusses related work. Preliminaries and a motivating
example are provided in Sec. 2. In Sec. 3 we introduce the syntax and semantics
of CAPTL. The CAPTL-based synthesis problem is introduced in Sec. 4, where
we first explore how a CAPTL requirement can be approached using PCTL,
followed by our proposed synthesis algorithm. For evaluation, we consider two
case studies in Sec. 5. Finally, we conclude the paper in Sec. 6. Full proofs can
be found in the extended version of this paper [9].

Related Work. The problem of multi-objective model checking and synthesis
has been studied in literature, spanning both MDPs and stochastic games, for
various properties, including reachability, safety, probabilistic queries, and reward-

Context-Aware Temporal Logic for Probabilistic Systems 3

based requirements [11,13,14]. Our work improves upon the multi-objective
synthesis paradigm by enabling priorities over the multiple objectives as we will
show in Sec. 2. One prevalent workaround is to define multiple reward structures,
where states are assigned tuples of real numbers depicting how favorable they
are with respect to multiple criteria. The synthesis problem is then reduced to
an optimization problem over either a normalized version of the rewards (i.e.,
assigning weights), or one reward with logical constraints on the others [1,7].
Results are typically presented as Pareto curves, depicting feasible points in the
reward space [14]. Our work differs in two aspects. First, we use probabilities as
means to define priorities rather than reward structures. Second, the mechanics
needed to define context-based priorities are an integral part of CAPTL.

Perhaps the closest notion to our context-based prioritization scheme are
probabilistic invariant sets (PIS) [17]. Both CAPTL and PIS involve the identifi-
cation of state-space subsets that maintain a probability measure within specific
bounds. While prevalent in the field of probabilistic programs [3], PIS was not
considered in the field of CPS synthesis, despite the fact that (non-probabilistic)
invariant sets are used in controller design [4]. The problem of merging strategies
for MDPs that correspond to different objectives has been investigated [5,27]. Our
approach, however, is primarily focused on formalizing the notion of context-based
priorities within the specification logic itself rather than altering the original
model. While one can argue that PCTL alone can be used to define priorities
by utilizing nested probabilistic operators, the nesting is typically limited to
qualitative operators [20]. In contrast, CAPTL relaxes such limitation by allowing
quantitative operators as well. Moreover, CAPTL-based synthesis provides an
insight into which objective is being pursued at a given state.

2 Problem Setting

Preliminaries. For a measurable event E, we denote its probability by Pr(E).
The powerset of A is denoted by P(A). We use R, N and B for the set of reals,
naturals and Booleans, respectively. For a sequence or a vector π, we write π[i],
i ∈ N, to denote the i-th element of π.

We formally model the system as an MDP. MDPs feature both probabilistic
and nondeterministic transitions, capturing both uncertain behaviors and nonde-
terministic choices in the modeled system, respectively. We adopt the following
definition for a system model as an MDP [2].

Definition 1 (System Model). A system model is an MDP M = (S,Act ,
P, s0,AP , L) where S is a finite set of states; Act is a finite set of actions;
P : S×Act×S → [0, 1] is a transition probability function s.t.

∑
s′∈S P(s, a, s′) ∈

{0, 1} for a ∈ Act; s0 is an initial state; AP is a set of atomic propositions; and
L : S → P(AP) is a labeling function.

Given a system M, a path is a sequence of states π = s0s1 . . . , such that
P(si, ai, si+1) > 0 where ai ∈ Act(si) for all i ≥ 0. The trace of π is defined as
trace(π) = L(s0)L(s1) · · · . We use FPathM,s (IPathM,s) to denote the set of all
finite (infinite) paths of M starting from s ∈ S. We use PathsM,s to denote the

4 M. Elfar et al.

set of all finite and infinite paths starting from s ∈ S. If P(s, a, s′) = p and p > 0,

we write s
a,p

// s′ to denote that, with probability p, taking action a in state s
will yield to state s′. We define the cardinality of M as |M| = |S|+ |P|, where
|P| is the number of non-zero entries in P.

A strategy (also known as a policy or a scheduler) defines the behavior upon
which nondeterministic transitions inM are resolved. A memoryless strategy uses
only the current state to determine what action to take, while a memory-based
strategy uses previous states as well. We focus in this work on pure memoryless
strategies, which are shown to suffice for PCTL reachability properties [2].

Definition 2 (Strategy). A (pure memoryless) strategy of M = (S,Act ,P,
s0,AP , L) is a function σ : S → Act that maps states to actions.

By composingM and σ, nondeterministic choices inM are resolved, reducing
the model to a discrete-time Markov chain (DTMC), denoted by Mσ. We use
PrσM,s to denote the probability measure defined over the set of infinite paths
IPathσM,s. The function Reach(M, s, σ) denotes the set of reachable states in M
starting from s ∈ S under strategy σ, while Reach(M, s) denotes the set of all
reachable states from s under any strategy.

We use probabilistic computation tree logic (PCTL) to formalize system ob-
jectives as temporal properties with probabilistic bounds, following the grammar

Φ ::= > | a | ¬Φ | Φ ∧ Φ | PJ [ϕ], ϕ ::= XΦ | ΦUΦ | ΦU≤kΦ,
where J ⊆ [0, 1], and X and U denote the next and until temporal modalities,
respectively. Other derived modalities include ♦ (eventually), � (always), and
W (weak until). Given a system M and a strategy σ, the PCTL satisfaction
semantics over s ∈ S and π ∈ PathsσM,s is defined as follows [2,12]:

s, σ |= a ⇔ a ∈ L(s)
s, σ |= ¬Φ ⇔ s 6|= Φ
s, σ |= Φ1∧Φ2 ⇔ s |= Φ1 ∧ s |= Φ2

s, σ |= PJ [ϕ] ⇔ Pr {π | π |= ϕ}∈J
π, σ |= XΦ ⇔ π[1] |= Φ
π, σ |= Φ1UΦ2 ⇔ ∃j ≥ 0.

(
π[j] |= Φ2 ∧ (∀0 ≤ k < j. π[k] |= Φ1)

)
π, σ |= Φ1U

≤nΦ2 ⇔ ∃0≤j≤n.
(
π[j] |= Φ2 ∧ (∀0≤k<j. π[k] |= Φ1)

)
PCTL can be extended with quantitative queries of the form Pmin[ϕ] (Pmax[Φ])

to compute the minimum (maximum) probability of achieving ϕ [12,26], i.e.,

Pmin[ϕ] = inf
σ∈Σ

PrσM,s ({π | π |= ϕ}) , Pmax[ϕ] = sup
σ∈Σ

PrσM,s ({π | π |= ϕ}) .

We will denote such queries as Popt (read: optimal), where opt ∈ {max,min}.
Motivating Example. Consider the simple grid-world shown in Fig. 1(left).
The robot can move between rooms through doorways where obstacles can be
probabilistically encountered (e.g., closed doors), requiring the robot to consume
more power. The robot state is captured as a tuple s : (g, h, x, y), where g ∈
{on, sleep, error} is the robot’s status, h ∈ {0, 1, ..., 10} is the robot’s battery level,
and x and y are its current coordinates. As shown in Fig. 1(right), the system can
be modeled as M = (S,Act ,P, s0,AP , L), where Act = {N, S,E,W, sleep, error},
and s0 = (0, 10, 1, 1). Suppose that the main objective for the robot is to reach the

Context-Aware Temporal Logic for Probabilistic Systems 5

1 2 3

3

2

1

Robot

Goal

Charging
station

Safe zone

Doorway

s : 〈g, h, x, y〉

〈0, 10, 1, 1〉

〈1, 10, 1, 1〉

〈0, 9, 2, 1〉

〈0, 9, 1, 2〉

〈0, 8, 1, 3〉

〈0, 7, 1, 2〉

〈1, 7, 1, 2〉〈0, 8, 1, 1〉

E

N
N

sleep sleep

0.9

0.1

0.9

0.1

0.9

0.1

Fig. 1. A motivating example of a robot (left) and part of its model (right).

goal with a charge h > 3 (objective A). However, if the probability of achieving
objective A is less than 0.8, the robot should prioritize reaching the charging
station and switch to sleep mode (objective B). Moreover, if the probability of
achieving objective B falls below 0.7, the robot should stop and switch to err
mode, preferably in one of the safe zones (objective C).

Now let us examine how such requirements can be formalized. Let ϕA =
♦(goal ∧ (h> 3) ∧ on), ϕB = ♦(chrg ∧ (h> 3) ∧ on), and ϕC = ♦(error). One
can use PCTL to capture each objective separately as the reachability queries
ΦA = Pmax[ϕA], ΦB = Pmax[ϕB], and ΦC = Pmax[ϕC]. A multi-objective query
Φ1 = ΦA ∨ ΦB ∨ ΦC does not capture the underlying priority structure in the
original requirements. In fact, an optimal strategy for Φ1 always chooses the
actions that reflect the objective with the highest probability of success, resulting
in a strategy where the robot simply signals an error from the very initial state.
Similarly, the use of Φ2 = Pmax[ϕAWϕB] does not provide means to specify the
context upon which switching from ϕA to ϕB occurs. Attempts featuring multi-
objective queries with nested operators, such as Φ3 = Pmax[ϕA ∧ Pmax≥0.8[ϕA]]∨
Pmax[ϕB ∧Pmax<0.8[ϕA]], have several drawbacks. First, correctly formalizing the
requirement is typically cumbersome and hard to troubleshoot. Second, to the
best of our knowledge, nested queries in the form of Popt∈J are not supported by
model checkers. Third, the semantics of the formalized requirement is potentially
different from the original one. For instance, Φ3 allows the system to pursue ϕA
even after switching to ϕB if the probability of achieving ϕA rises again above
0.8 — a behavior that was not called for in the original requirement.

Consequently, in this paper we focus on two problems: the formalization of
PCTL objectives with an underlying context-based priority structure, and the
synthesis of strategies for such objectives. The first problem is addressed by
introducing CAPTL in Sec. 3, while the second is addressed in Sec. 4. We will
use this motivating example as a running one throughout the rest of this paper.

3 Context-Aware Temporal Logic

CAPTL Syntax. CAPTL features two pertinent notions, namely, objectives
and contexts. Let M be our system model, and let Ξ be the set of all possible
PCTL path formulas defined for M. In CAPTL, we define an objective q as
a conjunctive optimization query q =

∧m
i=1 Popt [ϕi] , ϕi ∈ Ξ, m > 0. When

m > 1, q resembles a multi-objective optimization query in the conjunctive form.
Otherwise, in the simplest form where m = 1, q is a single-objective query.

6 M. Elfar et al.

q0 : Pmax [ϕ0] q1 : Pmax [ϕ1]

q2 : Pmax [ϕ2] q3 : Pmax [ϕ3]

w01 : Pmax<0.85 [ϕ0]

w23 : Pmax<0.8 [ϕ2]

w02 : Pmax<0.75 [ϕ0] w13 : Pmax<0.7 [ϕ1]

ϕ0 : ♦ (goal ∧ (h>3) ∧ on)

ϕ1 : ♦ (chrg ∧ (h>3) ∧ sleep)

ϕ2 : ♦ (safe ∧ sleep)

ϕ3 : ♦ (error)

Fig. 2. The CAPTL requirement for the running example.

A context w〈q,q′〉 marks a state where switching from objective q to objective q′

is required. Formally, we define a context w over Ξ as a set of satisfaction queries in
the disjunctive normal form w =

∨n
j=1

∧m
i=1 Popt∈Jij [ϕi,j] , ϕij ∈ Ξ, J ⊆ [0, 1] .

Intuitively, in a state where w〈q,q′〉 is satisfied, the system switches from q to q′.
Notice that the context definition utilizes the operator Popt∈Jij with an interval,
i.e., a context is evaluated at a given state as a boolean value in B. In contrast, the
objective definition utilizes the operator Popt without intervals, i.e., a quantitative
optimization query that can return a numerical value in [0, 1].

A CAPTL requirement defines a set of objectives to be satisfied, in addition to
a set of contexts, representing the probabilistic conditions upon which objectives
are prioritized. Formally, we define the syntax of a CAPTL requirement as follows.

Definition 3 (CAPTL Requirement). Given a set of PCTL path formulas
Ξ, a CAPTL requirement is a tuple A = (Q,W,Ξ, ↪→, q0) where

– Q ⊂ {
∧m
i=1 Popt [ϕi] | ϕi ∈ Ξ} is a finite nonempty set of objectives over Ξ,

– W ⊂
{∨n

j=1

∧m
i=1 Popt∈Jij [ϕi,j] | ϕij ∈ Ξ, Jij ⊆ [0, 1]

}
is a set of contexts,

– ↪→⊆ Q×W ×Q is a conditional transition relation, and
– q0 ∈ Q is an initial objective.

In a CAPTL requirement A, each state q ∈ Q represents an objective, i.e.,
an optimization query to be satisfied. The conditional transition relation ↪→
defines how objectives are allowed to change. For instance, if q

w
↪−→ q′, a shorthand

for (q, w, q′) ∈↪→, then the objectives are switched from q to q′ if w is satisfied.
Notice that contexts are used as labels for the conditional transition relation. In
the rest of this paper, we will overload the notation and use W : Q → P(W)
to denote the set of contexts emerging from a given objective. We will also use
Q(q, w) = q′ to denote that objective q has a context w that leads to q′.

Example 1. For the running example, Fig. 2 shows an example of a CAPTL
requirement A where Q = {q0, q1, q2, q3}, W = {w01, w02, w13, w23}, and ↪→=
{〈q0,w01,q1〉,〈q0,w02,q2〉,〈q1,w13,q3〉,〈q0,w23,q3〉}. The requirement starts by prioritizing
q0 = Pmax [ϕ0]. If Pmax [ϕ0] ∈ [0.75, 0.85), the context w01 becomes true, and by

executing q0
w01
↪−−→ q1, q1 = Pmax [ϕ1] is prioritized. Similarly, if Pmax [ϕ0] ∈ [0, 0.75),

w02 becomes true, executing q0
w02
↪−−→ q2 where q2 = Pmax [ϕ2] is prioritized. Notice

that objectives can have a single context, e.g., W (q1) = {w13}; multiple contexts,
e.g., W (q0) = {w01, w02}; or none, e.g., W (q3) = ∅.

Context-Aware Temporal Logic for Probabilistic Systems 7

CAPTL Semantics for MDPs. We progressively define CAPTL semantics
for MDPs by first defining the satisfaction semantics for objectives and contexts.
Let q = Pmax [ϕ] be the objective at state s, and let Σ be the set of all strategies
for M. We say that s, σ∗ |= q if σ∗ ∈ Σ such that

Prσ
∗,s
M = sup

σ∈Σ
PrσM,s

({
π ∈ PathsσM,s | π |= ϕ

})
. (1)

In that case, we call σ∗ a local strategy, i.e., an optimal strategy w.r.t. 〈q, s〉.

Definition 4 (Local Strategy). Let qi = Popt [ϕi] be an objective. A local
(optimal) strategy for 〈qi, si〉 is a strategy σ〈qi,si〉 ∈ Σ such that

Pr
σ〈qi,si〉
M,si

= opt
σ∈Σ

PrσM,si

({
π ∈ PathsσM,si | π |= ϕi

})
Next, let (q, w, q′) ∈↪→, where w = P≤c [ϕ]. Let sk ∈ Reach(M, s, σ∗), where

σ∗ is the local strategy for 〈q, s〉. We say that sk |= w if

sup
σ∈Σ

PrσM,sk

({
π ∈ PathsσM,sk

| π |= ϕ
})
≤ c. (2)

Note that contrary to (1), the set of paths {π} in (2) is not limited to those
induced by the local strategy σ∗. Moreover, if ∃π = s...si ...sk ∈ FPathσM,s s.t.
si |= w, and si 6|= w for all i < k, then sk is called a switching state, i.e., the first
state on a path π to satisfy w, triggering a switch from q to q′.

Definition 5 (Switching Set). Let q = Popt [ϕ] and σ∗ ∈ Σ such that s0, σ
∗ |=

q. The corresponding switching set Sq ⊆ Reach(M, s0, σ
∗) is defined as

Sq =

{
sk | ∃π = s0...si...sk ∈ FPathσ

∗

M,s0 s.t. si 6|=
∨

w∈W (q)

w, ∀i<k; sk |=
∨

w∈W (q)

w

}
.

We use Sq
′

q to denote the set of switching states from q to q′.

An objective is active in a state s if it is being pursued at that state.

Definition 6 (Active Objective). Let A = (Q,W,Ξ, ↪→, q0) and M = (S,
Act ,P, s0,AP , L). An activation function g :S → P(Q) is defined inductively as:
(i) g(s0) 3 q0; and (ii) g(s) 3 q′ if g(s) 3 q and s ∈ Sq′q . We say objective q ∈ Q
is active at state s ∈ S if g(s) 3 q.

As captured in Definition 4, local strategies are tied to their respective
objectives. Consequently, a local strategy is switched whenever an objective is
switched as well, and the new local strategy substitutes its predecessor. We call
the set of local strategies a strategy profile, and the resulting behavior a protocol.

Definition 7 (Protocol). Let A = (Q,W,Ξ, ↪→, q0) and M = (S,Act ,P, s0,
AP , L). Given a strategy profile σ =

{
σ〈q,s〉...

}
, the induced (optimal) protocol

is a (partial) function Π : Q× S 9 Act ∪ P(W) such that
– Π(q, s) = σ〈q,s〉(s) ∈ Act iff q ∈ g(s) and s 6∈ Sq; and

– Π(q, s) 3 w〈q,q′〉, where w〈q,q′〉 ∈W , iff q ∈ g(s) and s ∈ Sq′q .

Given 〈q, s〉, a protocol assigns either an optimal action based on the local
strategy associated with q, or a context to switch the active objective itself. We
will use P to denote the set of all possible protocols.

8 M. Elfar et al.

Definition 8 (System-Protocol Composition). LetM = (S,Act ,P, s0,AP ,
L) and Π : Q× S 9 Act ∪ P(W) be a compatible protocol. Their composition is

defined as MΠ =
(
Q̂,Act ∪W, P̂, ŝ0, L̂

)
where Q̂ ⊆ Q× S, ŝ0 = 〈q0, s0〉, and

P̂ (〈q, s〉, a, 〈q′, s′〉) =

P (s, a, s′) if Π(q, s) = a, q′ = q,
1 if Π(q, s) = w, s′ = s, q′ = Q(q, w),
0 otherwise.

We now define the CAPTL satisfaction semantics as follows.

Definition 9 (CAPTL Satisfaction Semantics). Let A = (Q,W,Ξ, ↪→, q0),
M = (S,Act ,P, s0,AP , L), and Π : Q × S 9 Act ∪ P(W). The CAPTL
satisfaction semantics is defined inductively as follows:

M, Π |= q ⇔ PrMΠ ({π ∈ PathsMΠ | last(π)=〈q, s′〉, s′ |= q}) > 1,

M, Π |=c A ⇔ PrMΠ ({π ∈ PathsMΠ | last(π)=〈q, s′〉, s′ |= q, q ∈ Q}) = c,

M, Π |= A ⇔M, Π |=>1 A.

CAPTL semantics dictate thatM and Π satisfy A if every path π ∈ PathsMΠ

ends with a state s ∈ S where q 3 g(s) and s |= q, i.e., the system reaches some
state s where some objective q is both active and satisfied.

CAPTL Fragments. A CAPTL requirement is nondeterministic if for some
q ∈ Q, ∃wi, wj ∈W (q) such that Sqiq ∩ S

qj
q 6= ∅. That is, at least one objective

has two or more contexts that can be active at the same state. If that is not the
case, then the CAPTL requirement is deterministic. We now identify a fragment
of deterministic CAPTL requirements where the following two conditions are met.
First, every q ∈ Q is a quantitative PCTL persistence objective. Second, every
w ∈W (q) is a qualitative PCTL persistence objective over the same persistence
set as in q. This is formally captured in the following definition.

Definition 10 (Persistence CAPTL). A CAPTL requirement A = (Q,W,
Ξ, ↪→, q0) is persistent if (i) every q ∈ Q is of the form q = Pmax[♦�B] for
some B ⊆ S and (ii) if W (q) 6= ∅ then for any w〈q,qj〉 ∈ W (q), it holds that
w〈q,qj〉 = Pmax∈Jj [♦�B] where (Jj) are disjoint intervals satisfying ∪jJj = [0, c)
for some 0 < c ≤ 1.

A persistence CAPTL (P-CAPTL) requirement allows for defining persistence
objectives, where each objective maximizes the probability of (i.e., prioritizes)
reaching a corresponding persistence set. Contexts in this case can be understood
as lower bounds of their respective objectives. That is, an objective is pursued as
long as, at any transient state, the probability of achieving such objective does
not drop below a certain threshold. The requirement also ensures that at most
one context is satisfied at any state, eliminating any nondeterminism in A.

Example 2. Continuing Example 1, Fig. 3 shows the persistence CAPTL require-
ment for the robot. Notice that all objectives are in the form Pmax[♦�B]. Also,
the intervals [0.75, 0.85) and [0, 0.75) of w01 and w02, respectively, are disjoint,
hence at most one context in W (q0) = {w01, w02} can be satisfied at any state.

Context-Aware Temporal Logic for Probabilistic Systems 9

q0 : Pmax [ϕ0] q1 : Pmax [ϕ1]

q2 : Pmax [ϕ2] q3 : Pmax [ϕ3]

w01:Pmax∈[0.75,0.85) [ϕ0]

w23 : Pmax<0.8 [ϕ2]

w02 : Pmax<0.75 [ϕ0] w13 : Pmax<0.7 [ϕ1]

ϕ0 :♦� (goal∧(h>3)∧on)

ϕ1 :♦� (chrg∧(h>3)∧sleep)

ϕ2 :♦� (safe∧sleep)

ϕ3 :♦� (error)

Fig. 3. The persistence CAPTL requirement for the running example.

4 CAPTL-Based Synthesis

In this section we first define the synthesis problem for CAPTL requirements.
Next, we examine a general procedure for deterministic CAPTL where the
synthesis problem is reduced to solving a set of PCTL-based strategy synthesis
problems. Finally, we utilize the underlying structure of persistence properties to
propose a synthesis procedure optimized for P-CAPTL requirements.

In the rest of this section, let M = (S,Act ,P, s0,AP , L) and A = (Q,W,
Ξ, ↪→, q0). We assume that a probabilistic model checker is given (e.g., PRISM-
games [19] or Uppaal Stratego [8]) that can accept an MDP-based model M
and a PCTL formula Φ as inputs, and provides the following functions:

– Reach :: (M, s) 7→ R ⊆ S returns the set of reachable states R = Reach(M, s).
– Verify :: (M, s, Φ) 7→ b ∈ B returns the Boolean value > if M, s |= Φ, and

returns ⊥ otherwise.
– Synth :: (M, s, Φ) 7→ (σ, c) returns a policy σ ∈ Σ s.t. Pr (Mσ

s |= Φ) = c for
some c ∈ [0, 1].

We also assume that the model checker functions terminate in finite time and
return correct answers. We now define the CAPTL synthesis problem as follows.

Definition 11 (CAPTL Synthesis Problem). Given M = (S,Act ,P, s0,
AP , L) and A = (Q,W,Ξ, ↪→, q0), the CAPTL synthesis problem seeks to find a
protocol Π : Q× S 9 Act ∪W such that M, Π |= A.

PCTL-Based Approach. The synthesis problem can be reduced to solving a
set of PCTL-based synthesis queries as demonstrated in Algorithm 1. Starting
with 〈q0, s0〉, the algorithm verifies whether any context w ∈W (q0) is satisfied,
and if true, adds w to the protocol and switches to the next objective. If no
context is satisfied, the algorithm synthesizes a local strategy and adds the
corresponding optimal action to the protocol.

Proposition 1. Algorithm 1 terminates; and returns Π, c iff M, Π |=c A.

Synthesis for P-CAPTL. We now propose a synthesis algorithm optimized for
persistence CAPTL. To this end, we show that for a given persistence objective,
synthesizing a local strategy in the initial state suffices. In a manner similar
to switching states (see Definition 5), we devise a partition of reachable states
for every objective. We will use those concepts to define a system-CAPTL
composition and show that it is bisimilar to MΠ .

10 M. Elfar et al.

Algorithm 1: PCTL-Based Synthesis

Input:M = (S,Act ,P, s0,AP , L), A = (Q,W,Ξ, ↪→, q0)
Result: Π, c such that M, Π |=c A

1 foreach q ∈ Q do Ŝq ← ∅, S̄q ← ∅
2 Π ← ∅, Ŝq0 ← {s0}, q ← q0, C← 0Q×S ∈ [0, 1]Q×S , repeat ← >
3 while Ŝq 6= ∅ do

4 Let s ∈ Ŝq, Ŝq ← Ŝq \ {s}, S̄q ← S̄q ∪ {s}
5 while repeat do repeat ← ⊥
6 foreach w ∈W (q) do
7 if Verify (M, s, w) = > then
8 Π ← Π ∪ {(s, q, w)}, q ← Q(q, w), repeat ← >, break

9 (σ,C(q, s))← Synth (M; s, q), Π ← Π ∪ {(s, q, σ(s))}
10 Ŝq ← Ŝq ∪

(
Post (M, s, σ(s)) \ S̄q

)
11 c← Verify

(
MΠ , 〈q0, s0〉, P

[
♦
∨
q∈Q(〈q, s〉 ∧C(q, s)=1)

])
Let R = Reach(M, s0). We first note that given M and q = Popt[♦�B],

existing model checking and synthesis algorithms typically compute a least

fixed point (LFP) vector xq ∈ [0, 1]
|R|

, where xq[s] is the optimal probability of
satisfying ♦�B at state s ∈ R (e.g., see [2,16]). That is, when Synth (M, s0, q) is
called, xq is computed, but only c = xq[s0] is returned (i.e., the value at the initial
state). We exploit this fact by implementing a function ReachP :: (M, s, q) 7→ xq
that returns the LFP vector xq associated with q.

Lemma 1 (Local Strategy Dominance). Let M = (S,Act ,P, s0,AP , L)
and q = Pmax[♦�B]. For all s ∈ Reach(M, s0), σ〈q,s〉 = σ〈q,s0〉

∣∣
Reach(M,s)

.

Lemma 1 signifies that a local strategy for q in the initial state (i.e., σ〈q,s0〉)
subsumes all local strategies for the same probabilistic reachability objective in
every s ∈ R. Next, for every q ∈ Q, let us define the following partition of R:
– Rqq = {s ∈ R | ∀w = Pmax∈J [♦�B] ∈W (q), xq[s] 6∈ J}, i.e., the states in R

where, if q is active, keep pursuing q.
– Rq

′

q = {s ∈ R | ∃w = Pmax∈J [♦�B] ∈W (q),xq[s] ∈ J, Q(q, w) = q′}, i.e., the
states in R where, if q is active, switch to q′.

Lemma 2 (Partitioning). Let M = (S,Act ,P, s0,AP , L), A = (Q,W,Ξ, ↪→,
q0), and R = Reach(M, s0). For every q ∈ Q,

⋃
q′∈QR

q′

q = R; and Rq
′

q ∩Rq
′′

q = ∅
for every q′ 6= q′′.

Proof Sketch. From Definition 10, the intervals (Jw)w∈W (q) are disjoint; hence

(Rq
′

q)q′ 6=q are disjoint as well, and that Rqq = R/
(⋃

q′ 6=q R
q′

q

)
. ut

Example 3. Returning to the P-CAPTL requirement specified in the running
example (see Fig. 3), Fig. 4 depicts the partitioning of the state-space based
on q0, q1, q2 and q3. Notice that for any q ∈ Q, the sets (Rq

′

q)q′∈Q are pairwise

disjoint, where ∪q′∈QRq
′

q = Reach(M, s0). For example, Rq0q0 , Rq1q0 and Rq2q0 do not
intersect, and their union spans R = Reach(M, s0). In this case, Rq3q0 = ∅ since
there is no direct context emerging from q0 to q3.

Context-Aware Temporal Logic for Probabilistic Systems 11

S \R R=1
q Rqq Rq1q0 Rq2q0 Rq3q1 Rq3q2

q 3

g 0
g 1

g 2

q 2

g 0
g 1

g 2

h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

q 1

g 0
g 1

g 2

h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

q 0

g 0
g 1

g 2

Fig. 4. Partitioning the state-space of the running example using q0, q1, q2, and q3. For
example, 〈q1, g0, h5, 2, 1〉 = . indicates that s : 〈g, h, x, y〉 = 〈0, 5, 2, 1〉 ∈ Rq3q1 .

Definition 12 (System-CAPTL Composition). Let M = (S,Act ,P, s0,
AP , L), A = (Q,W,Ξ, ↪→, q0), and σ = {σ〈q,s0〉 | q ∈ Q}. Their compo-

sition is defined as the automaton Mσ
A = (V,Act ,Pv,→′, v0,AP , L̄) where

V ⊆ S × Q × Γ , and Γ = { 1 , 2 }; Act = Act ∪W ∪ {τ}, where τ is a stutter
action; v0 = 〈s0, q0, 2 〉; L̄ : V → P(AP) such that L̄(〈s, q, γ〉) = L(s); and the
transition relation →′ is defined using the following compositional rules:

[R1]
s
a,p

// s′ ∧ σ〈q,s0〉(s)=a

〈s, q, 1 〉
a,p

// ′〈s′, q, 2 〉
[R2]

s ∈ Rqq

〈s, q, 2 〉 τ // ′〈s, q, 1 〉
[R3]

s ∈ Rq′q

〈s, q, 2 〉
w〈q,q′〉

// ′〈s, q′, 2 〉
.

The rules in Definition 12 are interpreted as follows. The state space V is
partitioned into V 1 (whereM actions are allowed) and V 2 (where A actions are

allowed), resembling a turn-based 2-player game. [R1] ensures that, if q is active
in s, then only the transitions with the optimal action σ〈q,s0〉(s) are allowed.

[R2] ensures that, if s ∈ Rqq , the active objective remains unchanged. If s ∈ Rq′q ,
however, [R3] enforces switching the active objective to q′. The action τ is a

stutter since ∀v τ // v′, L̄(v) = L̄(v′).

Lemma 3 (Induced DTMC).Mσ
A constructed using Definition 12 is a DTMC.

Lemma 3 dictates that the probability measure PrMσ
A

is well-defined. We will
now use the notion of stutter equivalence [2] to prove that Mσ

A is bisimilar to
MΠ . Basically, two paths π1 and π2 are stutter-equivalent, denoted by π1 , π2, if
there exists a finite sequence A0 ...An ∈ (P(AP))+ such that trace(π), trace(π̂) ∈
A+

0 A
+
1 ...A+

n , where A+ ={A,AA, ...} is the set of finite, non-empty repetitions.

Theorem 1 (Stutter-Equivalence). Let M, A, and Π ∈ P be such that
M, Π |= A. For every π ∈ FPathMΠ there exists π̂ ∈ FPathMσ

A
such that π , π̂

and PrMΠ (π) = PrMσ
A

(π̂). For every π̂ ∈ FPathMσ
A

, where last(π̂) ∈ V 2 , there

exists π̂ ∈ FPathMΠ such that π̂ , π and PrMσ
A

(π̂) = PrMΠ (π).

Proof Sketch. We show that for every execution fragment %1 = 〈s, q〉
a,p

// 〈s, q′〉
there exists %̂1 = 〈s, q, 2 〉 τ // 〈s, q, 1 〉

a,p
// 〈s′, q, 2 〉. Moreover, for every %2 =

12 M. Elfar et al.

〈s, q〉 w // 〈s′, q〉 there exists %̂2 = 〈s, q, 2 〉 w // 〈s, q′, 2 〉. Using induction, we show
that for every arbitrary execution % there exists %̂ such that % , %̂, where

trace(%) = (A0 +A0A0) (A1 +A1A1) ... (An +AnAn) ∈ (P(AP))+

trace(%̂) = (A0A0) (A1A1) ... (AnAn) ∈ (P(AP))+

and Pr(%) = Pr(%̂). Similarly, the other direction can be shown for every last(%̂)
that ends with last(%̂) ∈ V 2 . ut

We use Theorem 1 to devise the protocol synthesis procedure summarized in
Algorithm 2. In the first part (lines 1–8), the procedure starts by synthesizing

a local strategy σ〈q0,s0〉 and obtaining the associated LFP vector xq0 ∈ [0, 1]
R

.
Next, R is partitioned using xq0 to obtain (Rqq0)q∈Q. If Rqq0 6= ∅ for some q 6= q0,

the same procedure is repeated for q to obtain 〈q, s0〉, xq and (Rq
′

q)q′∈Q. In the
second part (lines 9–16), three modules are constructed based on Definition 12.
The resulting parallel composition constitutes Mσ

A, which mimics a stochastic

2-player game between M̂ (player 1) and Â (player 2), where the players’
choices are already resolved by σ̂. Finally, Π is populated by a query that checks
for the CAPTL satisfaction condition (line 17), i.e., a state 〈s, qi, γ〉 is reached
where qi = Pmax[♦�Bi] is active, and �Bi holds. Notice that, based on the
results from Lemma 1, Algorithm 2 synthesizes a local strategy at most once for
every q ∈ Q, compared to Algorithm 1 where synthesis is performed at every
reachable state.

Theorem 2. Algorithm 2 terminates; and returns Π, c iff M, Π |=c A.

h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

q a
ct
=
q 0

q a
ct
=
q 1

q a
ct
=
q 2

q a
ct
=
q 3

V \RV

North
East
Sleep
Error
Stop
w01
w02
w13
w23 g 0

g 1
g 2

g 0
g 1

g 2
g 0

g 1
g 2

g 0
g 1

g 2

Fig. 5. The protocol synthesized based on
the CAPTL requirement in Fig. 3, where
RV = Reach(Mσ

A, v0).

Example 4 (Protocol Synthesis). For
the CAPTL requirement in Example 2
(see Fig. 3), Fig. 5 shows a visual rep-
resentation of the protocol synthesized
using Algorithm 2, where blue markers
indicate actions in Act , and red mark-
ers indicate actions in W . While pursu-
ing q0, the robot can achieve the task
by moving N(N), N(N), E(I) if no ob-
stacles are encountered, or if obstacles
are encountered only once while moving
E(I). Switching from q0 to q1 via w01(

O

)
occurs in one state (0, 7, 1, 2); while
switching from q0 to q2 via w02(O) oc-
curs in four states (0, 8, 1, 1), (0, 4, 3, 1),
(2, 7, 2, 3) and (0, 4, 1, 3).

5 Experimental Evaluation

We demonstrate the use of CAPTL for protocol synthesis and analysis on two case
studies. The first extends the robot task planning problem introduced in Sec. 2.
The second considers the problem of synthesizing an error-resilient scheduler

Context-Aware Temporal Logic for Probabilistic Systems 13

Algorithm 2: Synthesis Procedure for P-CAPTL

Input:M = (S,Act ,P, s0,AP , L), A = (Q,W,Ξ, ↪→, q0)
Result: Π, c such that M, Π |=c A

1 foreach (q, q′) ∈ Q×Q do Rq
′
q ← ∅ // Initialize

2 Π ← ∅, Q̂← {q0}, Q̄← ∅, R← Reach(M, s0)

3 while Q̂ 6= ∅ do // Partition R

4 Let q ∈ Q̂, Q̂← Q̂ \ {q}, Q̄← Q̄ ∪ {q}, Rqq ← R
5 σ〈q,s0〉 ← Synth (M; s0, q), xq ← ReachP

(
M, s0, σ〈q,s0〉

)
6 foreach w ∈W (q) where q′ = Q(q, w) do

7 Rq
′
q ← {s | xq[s] ∈ Jw}, Rqq ← Rqq \Rq

′
q

8 if Rq
′
q 6= ∅ ∧ q′ 6∈ Q̄ then Q̂← Q̂ ∪ {q′}

9 construct M̂ module such that // Construct Mσ
A

10 foreach [a] s→ pi : (s′i) do add [a] s ∧ 1 → pi : (s′i) ∧ (2)

11 construct Â module such that
12 foreach q ∈ Q̄ do add [τ] qact = q ∧ 2 ∧ L(Rqq ; s)→ (qact = q) ∧ (1)

13 foreach q
w // q′ do add [w] qact=q ∧ 2 ∧ L(Rq

′
q ; s)→ (qact = q′) ∧ (2)

14 construct σ̂ module such that
15 foreach σ〈q,s0〉 6= ∅ and s ∈ R do add [σ〈q,s0〉(s)] qact = q ∧ s→ >
16 Mσ

A ← M̂ ‖ Â ‖ σ̂
17 (Π, c)← Synth

(
Mσ
A, 〈q0, s0, 2 〉, P[

∨
qi∈Q ♦�(qact = qi) ∧Bi]

)
for digital microfluidic biochips. To this end, we implemented Algorithm 2 in
MATLAB on top of a modified version of PRISM-games [19] (v4.4), where
ReachP functionality was added. The experiments presented in this section were
run on an Intel Core i7 2.6GHz CPU with 16GB RAM.

Robotic Task Planner. Table 1 summarizes the performance results for run-
ning Algorithm 2 on various sizes of the running example. Notice that the number
of choices in Mσ

A always matches the number of states, which agrees with the
results from Lemma 3. In the three models, q0 is always active in s0, and thus
is always verified. As the grid size grows larger, the probability of reaching the
goal — and hence satisfying q0 — becomes lower, dropping below 0.85 at the
initial state in both (6×6) and (9×9). As a result, q1 is never active (and hence is
never verified) in the second and third models. We also notice that the total time
required to run Algorithm 2 does not necessarily grow as the size of the problem
grows. In fact, the total time required for (6×6) and (9×9) is lower than the one
for (3×3). This is primarily due to the fact that q1 is never reached or verified in
the second and third models as we described. When comparing the model size
for M and Mσ

A, we notice that |Mσ
A| < |M|, with the difference being in orders

of magnitude for larger models. However, the time required to construct Mσ
A is

longer than the time required to construct M.

MEDA-Biochip Scheduler. We now consider synthesizing error-resilient
scheduler for micro-electrode-dot-array (MEDA) digital microfluidic biochips,
where we borrow examples from [10,21]. A biochip segment consists of a W×H
matrix of on-chip actuators and sensors to manipulate microfluidic droplets, and

14 M. Elfar et al.

0

1

2

3

45 6

7

{mixed}

{aborted}

{salvaged}

dispense!

mvA[d]!

mvB [d]!

update!

inBlock

mix

¬abAbsent
repeat

flush!

abAbsent

exit

abort

abort
0

1

23

dispense?

mvA[d]?

flush?

x=x0 + εx
y =y0 + εy

p1(e`)

x+=0
y +=0

1−p1(e`)

x+=∆x(d)
y +=∆y(d)

update?
e`++

update?
¬atExit

update?
atExit

1−p2(e`)

x = 0
y = 0

p2(e`)

Fig. 6. The MEDA biochip scheduler model (left) and the droplet model (right).

q0 : Pmax [♦�mixed] q1 : Pmax [♦�salvaged] q2 : Pmax [♦�aborted]

w01 : Pmax∈[0.7,0.85) [♦�mixed] w12 : Pmax<0.7 [♦�salvaged]

w02 : Pmax<0.7 [♦�mixed]

Fig. 7. P-CAPTL requirement for a MEDA-biochip segment scheduler.

is further partitioned into 3 × 3 blocks. Two reservoirs are used to dispense
droplets A and B. Various activation patterns can be applied to manipulate
the droplets, including moving (moving droplets individually), flushing (moving
both droplets at the same time in the same direction) and mixing (merging
two droplets occupying the same block). As the biochip degrades, the actuators
become less reliable, and an actuation command may not result in the droplet
moving as expected. The probability of an error occurring is proportional to the
total number of errors occurred in the same block.

Fig. 6 shows part of the segment scheduler (left) and the droplet (right)
models. Initially, the scheduler can dispense both droplets through the dispense
action, where the droplet location (x, y) can probabilistically deviate from the
dispenser location (x0, y0) with error ε. Subsequently, droplets can be individually
manipulated via mvA[d] and mvB [d] actions where d is the direction, or together
via flush. The probability of successful manipulation (1− p(e`)) depends on both
the number of errors within the same block (e`) and the activation pattern used.
The scheduler executes update to sense droplet locations and register errors.

The primary task of the scheduler is to perform a mixing operation within
the given segment (q0). However, if the droplets are dispensed and (due to
faulty blocks) the probability of a successful mixing operation is below 0.85
(w01), salvaging the dispensed droplets by moving them to an adjacent segment is
prioritized (q1). If the mixing probability drops below 0.7 (w02), or if the salvaging
probability drops below 0.7 (w12), the scheduler is to abort the operation (q2).
The aforementioned requirements are formalized using CAPTL as shown in Fig. 7.
The set of objectives is Q = {q0, q1, q2}, and the set of contexts is defined as
W = {w01, w02, w12}. The performance results for running Algorithm 2 on three
different segment sizes is reported in Table 1.

Context-Aware Temporal Logic for Probabilistic Systems 15

Table 1. Protocol synthesis performance results for the robotic task planner (C1) and
the MEDA-biochip scheduler (C2). (St.: states, Tr.: transitions, Ch.: choices).

Model M Size Mσ
A Size Construction/Synthesis Time (sec)

Size St. Tr. Ch. St. Tr. Ch. M q0 q1 q2 q3 Mσ
A qA Total

C1 3×3 233 1,117 745 142 163 142 0.438 0.031 0.029 0.033 0.106 0.557 0.052 25.5

6×6 595 2,692 1,874 159 190 159 0.495 0.041 – 0.083 0.260 0.662 0.112 24.2

9×9 733 3,242 2,278 96 116 96 0.508 0.037 – 0.059 0.313 0.691 0.083 21.9

C2 8×5 2,851 8,269 5,678 2,576 2,929 2,576 1.308 2.348 0.433 3.122 – 17.95 3.585 60.53

11×5 8,498 25,502 17,214 4,167 4,673 4,167 2.013 7.212 1.577 9.928 – 79.77 5.84 149.6

11×8 15,290 47,602 31,316 3,223 3,653 3,223 2.065 12.36 2.536 18.61 – 109.2 4.498 218.5

14×8 61,489 201,469 130,718 1,016 1,339 1,016 4.545 48.07 10.67 68.40 – 289.9 1.289 450.4

6 Conclusion

In this paper we have introduced context-aware probabilistic temporal logic
(CAPTL). The logic provides intuitive means to formalize requirements that
comprises a number of objectives with an underlying priority structure. CAPTL
allows for defining context (i.e., probabilistic conditions) as the basis for switching
between two different objectives. We have presented CAPTL syntax and semantics
for MDPs. We have also investigated the CAPTL synthesis problem, both from
PCTL and CAPTL-based approaches, where we have shown that the latter
provides significant performance improvements. To demonstrate our work, we
have presented two case studies. As this work has primarily considered CAPTL
semantics for MDPs, further investigation is required to generalize the results for
stochastic multi-player games. Another research direction involves expanding the
results to include PCTL fragments beyond persistence objectives, such as safety,
bounded reachability and reward-based objectives.

Acknowledgments. This work was supported in part by the NSF CNS-1652544
and ECCS-1914796, ONR N00014-20-1-2745 and N00014-17-1-2504, as well as
AFOSR FA9550-19-1-0169 awards.

References

1. Baier, C., Dubslaff, C., Korenčiak, L., Kučera, A., Řehák, V.: Synthesis of optimal
resilient control strategies. In: International Symposium on Automated Technology
for Verification and Analysis. pp. 417–434. Springer (2017)

2. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT press
(2008)

3. Barthe, G., Espitau, T., Fioriti, L.M.F., Hsu, J.: Synthesizing probabilistic invari-
ants via doob’s decomposition. In: International Conference on Computer Aided
Verification. pp. 43–61. Springer (2016)

4. Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)
5. Boutilier, C., Brafman, R.I., Geib, C.: Prioritized goal decomposition of markov

decision processes: Toward a synthesis of classical and decision theoretic planning.
In: IJCAI. pp. 1156–1162 (1997)

6. Bozkurt, A.K., Wang, Y., Zavlanos, M.M., Pajic, M.: Control synthesis from
linear temporal logic specifications using model-free reinforcement learning. In:
Proceedings of 2020 IEEE Int. Conf. on Robotics and Automation (ICRA)

7. Brázdil, T., Kučera, A., Novotnỳ, P.: Optimizing the expected mean payoff in
energy markov decision processes. In: International Symposium on Automated
Technology for Verification and Analysis. pp. 32–49. Springer (2016)

16 M. Elfar et al.

8. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal
stratego. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 206–211. Springer (2015)

9. Elfar, M., Wang, Y., Pajic, M.: Context-aware temporal logic for probabilistic sys-
tems. arXiv e-prints arXiv:2007.05793 (2020), https://arxiv.org/abs/2007.05793

10. Elfar, M., Zhong, Z., Li, Z., Chakrabarty, K., Pajic, M.: Synthesis of error-recovery
protocols for micro-electrode-dot-array digital microfluidic biochips. ACM Transac-
tions on Embedded Computing Systems (TECS) 16(5s), 1–22 (2017)

11. Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective model
checking of markov decision processes. In: Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems. pp. 50–65. Springer (2007)

12. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification
techniques for probabilistic systems. In: International School on Formal Methods
for the Design of Computer, Communication and Software Systems. pp. 53–113.
Springer (2011)

13. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp. 112–127.
Springer (2011)

14. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: International Symposium on Automated Technology for Verification
and Analysis. pp. 317–332. Springer (2012)

15. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification
of a dual chamber implantable pacemaker. In: Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 188–203. Springer (2012)

16. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for markov decision processes. Formal Meth-
ods in System Design 36(3), 246–280 (2010)

17. Kofman, E., De Doná, J.A., Seron, M.M.: Probabilistic set invariance and ultimate
boundedness. Automatica 48(10), 2670–2676 (2012)

18. Kress-Gazit, H., Lahijanian, M., Raman, V.: Synthesis for robots: Guarantees and
feedback for robot behavior. Annual Review of Control, Robotics, and Autonomous
Systems 1, 211–236 (2018)

19. Kwiatkowska, M., Parker, D., Wiltsche, C.: Prism-games: verification and strategy
synthesis for stochastic multi-player games with multiple objectives. International
Journal on Software Tools for Technology Transfer 20(2), 195–210 (2018)

20. Lahijanian, M., Andersson, S., Belta, C.: Control of markov decision processes from
pctl specifications. In: Proceedings of the 2011 American Control Conference. pp.
311–316. IEEE (2011)

21. Li, Z., Lai, K.Y.T., Yu, P.H., Chakrabarty, K., Pajic, M., Ho, T.Y., Lee, C.Y.: Error
recovery in a micro-electrode-dot-array digital microfluidic biochip. In: Proceedings
of the 35th International Conference on Computer-Aided Design. pp. 1–8 (2016)

22. Neema, S., Sztipanovits, J., Karsai, G., Butts, K.: Constraint-based design-space
exploration and model synthesis. In: International Workshop on Embedded Software.
pp. 290–305. Springer (2003)

23. Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., Lee, I.: Model-
driven safety analysis of closed-loop medical systems. IEEE Transactions on Indus-
trial Informatics 10(1), 3–16 (2012)

24. Puggelli, A., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Robust strategy synthesis
for probabilistic systems applied to risk-limiting renewable-energy pricing. In: 2014
International Conference on Embedded Software (EMSOFT). pp. 1–10. IEEE (2014)

25. Seshia, S.A., Sadigh, D., Sastry, S.S.: Formal methods for semi-autonomous driving.
In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). pp. 1–5

26. Svoreňová, M., Kwiatkowska, M.: Quantitative verification and strategy synthesis
for stochastic games. European Journal of Control 30, 15–30 (2016)

27. Wiltsche, C.: Assume-Guarantee Strategy Synthesis for Stochastic Games. Ph.D.
thesis, University of Oxford (2015)

https://arxiv.org/abs/2007.05793

	Context-Aware Temporal Logic for Probabilistic Systems

