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Abstract—A digital microfluidic biochip (DMFB) enables the
miniaturization of immunoassays, point-of-care clinical diagnos-
tics, and DNA sequencing. A recent generation of DMFBs uses a
micro-electrode-dot-array (MEDA) architecture, which provides
fine-grained control of droplets and real-time droplet sensing
using CMOS technology. However, microelectrodes in a MEDA
biochip can degrade due to charge trapping when they are re-
peatedly charged and discharged during bioassay execution; such
degradation leads to the failure of microelectrodes and erroneous
bioassay outcomes. To address this problem, we first introduce
a new microelectrode-cell design such that we can obtain the
health status of all the microelectrodes in a MEDA biochip by
employing the inherent sensing mechanism. Next, we present a
stochastic game-based model for droplet manipulation, and a
formal synthesis method for droplet routing that can dynamically
change droplet transportation routes. This adaptation is based on
the real-time health information obtained from microelectrodes.
Comprehensive simulation results for four real-life bioassays
show that our method increases the likelihood of successful
bioassay completion with negligible impact on time-to-results.

I. INTRODUCTION

Digital microfluidic biochips (DMFBs) are being adopted
for biomolecular recognition, point-of-care diagnostics, and
air-quality monitoring applications [1], [2], [3]. A microflu-
idic biochip manipulates tiny amounts of fluids to automat-
ically execute biochemical protocols for point-of-care clini-
cal diagnosis with high efficiency and fast sample-to-result
turnaround [4], [5]. Because of these characteristics, the Rapid
Acceleration of Diagnostics (RADx) initiative from the Na-
tional Institutes of Health has recently awarded grants to sev-
eral biomedical diagnostic companies to develop microfluidic
technologies that can dramatically increase COVID-19 testing
capacity and throughput [6].

Micro-electrode-dot-array (MEDA) biochips have been pro-
posed in recent years to further advance DMFB technology [7].
A MEDA biochip manipulates fluids as discrete droplets of
picoliter volume using the principle of electro-wetting-on-
dielectric (EWOD) on a two-dimensional array of micro-
electrodes [8]. Multiple microelectrodes can be dynamically
grouped to form a fluidic module (e.g., splitter or mixer).
MEDA biochips have been fabricated using TSMC 0.35 µm
CMOS technology [9].

In the MEDA platform, a real-time capacitive-sensing cir-
cuit is integrated with each microelectrode to detect the
location and properties of a droplet. In each operational cycle,
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the sensing circuit discharges and charges the microelectrode,
and measures the charging time. The charging time is used to
detect whether a droplet is present over the microelectrode. To
obtain the positions of on-chip droplets, the sensing results of
all the microelectrodes are shifted out using a scan chain.

Prior work has identified a number of failure mechanisms
for DMFBs [10]. Some of these are related to manufacturing
defects; post-fabrication testing can be used to screen for such
defects [11]. However, charge trapping in the dielectric layer
and degradation of the insulator can result in microelectrode
degradation [12], [13]. If an electrode is degraded during
bioassay execution, fluidic operations associated with this
electrode will fail, resulting in bioassay failure [14], [15].

Hence, to reliably execute bioassays on MEDA biochips, we
must proactively avoid the use of degraded microelectrodes.
In this paper, we first present a new hardware design that can
provide dynamic health information about microelectrodes. We
next present a scalable formal synthesis method for droplet
routing that can dynamically change droplet transportation
routes, based on the real-time health information obtained from
microelectrodes. The specific contributions of this paper are
the following:
• We introduce a MEDA biochip hardware design that

allows fine-grained sensing of individual microelectrodes.
• We develop a scalable formal stochastic game-based

model for droplet manipulation in a MEDA biochip. This
model utilizes the fine-grained sensing results from the
new hardware design.

• We introduce a formal synthesis framework where the
the above model is utilized to automatically synthesize
droplet routing strategies that maximize the likelihood of
successful bioassay execution.

• We develop a MEDA biochip simulator to evaluate the
proposed framework and present simulation results for
four benchmark bioassays.

II. BACKGROUND AND MICROELECTRODE CELL DESIGN

A. Bioprotocol Synthesis on DMFBs
In the DMFB synthesis flow [16], a bioassay protocol with

specified fluidic operations is first developed by biologists.
Next, a synthesis tool maps fluidic operations to fluidic
modules on the electrode array [17], [18]. Droplets need to
be transported as part of the bioprotocol synthesized on the
DMFB. Various droplet-routing methods have been proposed
in the literature [19], [20], [21], [22], including techniques



Fig. 1: Schematics of (a) the original and (b) the new proposed MC in MEDA.

that are specific to MEDA [23], [14]. However, these methods
do not consider electrode degradation. Recently, reinforcement
learning has been proposed to transport droplets in a reliable
manner [15]. However, this approach does not monitor the
dynamic health condition of electrodes and therefore fluidic
operations associated with degraded electrodes may still fail.

B. MEDA Biochips and Microelectrode Cell
A MEDA biochip is composed of an array of identical

microelectrode cells (MCs) and a controller; the schematic of
an MC is shown in Fig. 1(a). Each MC consists of a micro-
electrode, an electronic control circuit, and a sensing module.
To carry out a bioassay on a MEDA biochip, a synthesis tool is
first used to generate a schedule of fluidic operations, module
placement, and droplet routes for the bioassay [14]. These are
next mapped to a sequence of actuation patterns. The actuation
patterns are sequentially shifted to the MC array through a scan
chain. The MCs are actuated based on the scanned-in data, and
the corresponding fluidic operations are carried out based on
EWOD. After MC actuation, all the MCs are set to the sensing
mode to capture droplet locations. The sensing results are then
scanned out as a bitstream. The process of shifting an actuation
bitstream, MC actuation, droplet sensing, and shifting the
sensing results is referred to as an operational cycle.

C. Microelectrode Degradation and Health Monitoring
MC sensing is used to detect droplet locations by measuring

the capacitance between the top plate and bottom plate. The
controller sets ACT = 0, ACT b = 1, and SEL = 1; it
also connects the top plate to ground. When this happens,
transistors T1, T2, and T4 are switched on while transistor T3
is switched off, the bottom plate is connected to VDD (3.3 V)
and the voltage of the bottom plate increases to 3.3 V. Next,
the control circuit set ACT b = 0, and transistors T1, T3 and
T4 are switched on while transistor T2 is switched off. As a
result, the bottom plate is now connected to ground, and the
voltage of the bottom plate decreases due to discharging. By
applying a rising edge of MC-CLK at a preset time, a value
of “0” or “1” can be stored in the DFF.

A major contributor to microelectrode degradation is the
gradual trapping of charge in the dielectric layer [13], [24],

TABLE I: Notation used for the simulation.

Symbols Description Values

A Area of a microelectrode 50×50 µm2

εo Silicon-oil permittivity 19× 10−12 (F/m)
Co Capacitance of a healthy microelectrode 2.375× 10−15 (F)
Cd1 Capacitance of a partially degraded microelectrode 2.380× 10−15 (F)
Cd2 Capacitance of a completely degraded microelectrode 2.385× 10−15 (F)
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Fig. 2: Simulation results for the new MC.

[25]. Thus, a proactive approach to ensure reliable fluidic
operations is to estimate the degradation status of all micro-
electrodes in real-time and utilize only the healthy ones. To
achieve this, we introduce a new MC design (Fig. 1(b)).

Charge trapping in the dielectric layer results in a higher
capacitance between a degraded microelectrode and the top
plate [26]; therefore, we can use capacitive sensing to detect
degradation. An extra D flip-flop (DFF) is added to the MC
design, and the rising edge of the CLK signal for this DFF
is designed to arrive later than that of the other (original)
DFF. For a healthy microelectrode, the 2-bit sensing result
is “11”. If a microelectrode is partially degraded, the charg-
ing/discharging time is slightly less than that of a healthy
microelectrode, and the newly added DFF is able to capture
this difference by registering a different value compared to
the original DFF (“0” versus “1”). If a microelectrode is com-
pletely degraded, the charging/discharging time is significantly
lower than that of a healthy microelectrode, and both DFFs
record “0”. This dynamic 2-bit sensing result provides the
health-status information for the formal analysis model and
synthesis method described in Sections III–IV.

We simulated the new MC design in HSPICE, using the
macro-model for the extended-drain MOS transistors in the
MC and a 350 nm library from a foundry; these models and
parameters match the characteristics of fabricated biochips.
We calculated the capacitance of microelectrodes using the
parameters listed in Table I. The simulation results are shown
in Fig. 2, where the rising edge of the clock signal of the added
DFF needs to be asserted 5 ns later than that of the original
DFF. Note that MCs are fabricated using CMOS technology
and CMOS-based frequency dividers in the range of GHz are
available [27]. Hence, by carefully controlling the rising edges
of the two DFFs, we can dynamically measure the health status
of a microelectrode. The added DFF has no impact on the chip
footprint because its area (∼27 µm2) is much less than the
area of a microelectrode (2,500 µm2) minus the area of the
electronics underneath it (∼88.2 µm2) [7]; the microfluidics
part clearly dominates the overall area of the MC.



III. MEDA BIOCHIP MODEL

Notation: N0 is the set of non-negative integers. For a, b ∈
N0, Ja, bK is the discrete interval {x | x ∈ N0, a ≤ x ≤ b}, and
J(a1, a2), (b1, b2)K denotes the 2-dimensional discrete interval
{(x, y) | (x, y) ∈ Ja1, b1K× Ja2, b2K}. For a variable x, x(k)

denotes its value at time k ∈ N0. We use bold symbols for
matrices, e.g., M = (Mij) ∈ Rm×n; Mij is the element in the
ith row and jth column. For a set A, P(A) is its power set.
A. Droplet Model

Consider a MEDA biochip with W × H MCs. A Boolean
matrix of size W × H could be used to capture which MCs
are covered by a droplet. However, a typical MEDA biochip
can have over 1, 800 MCs [14], resulting in a model with
a state-space that is too large for formal synthesis. Hence,
we use the properties of microfluidic operations to develop
a scalable droplet actuation model. Specifically, we model a
droplet using the underlying actuation pattern as the droplet
size, shape and location are tightly coupled with such pattern.
For example, actuation patterns typically take a rectangular,
fully-filled form where free-roaming of droplets (i.e., leaving
them without actuation) is not allowed; and under- or over-
actuation of droplets is of no use. By restricting the state-space
to the actuation patterns of interest, we significantly reduce the
model size; thus, enabling runtime formal strategy synthesis.

Formally, we use U to indicate the biochip actuation matrix,
where U (k)

ij ∈ {0, 1} indicates whether MCij is actuated (1) or
not actuated (0) at time k. Furthermore, we model a droplet as
δ = (xa, ya, xb, yb) ∈ N4

0, where (xa, ya) and (xb, yb) are the
coordinates of the lower-left and upper-right corners (i.e., xb ≥
xa, yb ≥ ya), and Uij = 1 for all (i, j) ∈ J(xa, ya), (xb, yb)K.
We use ∆ ⊂ N4

0 to denote the set of all possible droplets.
B. MC Reliability Model

Previous work has shown that charge trapping in a dielectric
layer follows an exponential model, and such models have
been experimentally verified [28], [24], [29]. To be consistent
with the experimental results reported for DMFBs in [30], we
model the reliability of an MC as

D
(n)
ij = τn/c ∈ [0, 1], (1)

where n is the number of times MCij was actuated, and τ ∈
[0, 1] and c ∈ R are constants capturing the MCij degradation
rate. From (1), the (degraded) actuation voltage on MCij can
be denoted as V (n)

ij = VaD
(n)
ij = Vaτ

n/c, where Va is the
nominal actuation voltage. The relative EWOD force exerted
by MCij on an adjacent droplet can be estimated [14]:

F̄
(n)
ij ≈

(
V

(n)
ij /Va

)2
= τ2n/c. (2)

Finally, the health level of MCij is observable via variable
H

(n)
ij = b2b ·D(n)

ij c = b2b ·τn/cc, where b ∈ N0 is the number
of bits used to measure the health level (recall that we use
two bits in the MC design of Sec. II), and H = (Hij) is the
MC health matrix for the biochip. Fig. 3 shows the impact of
the number of actuations (n) on the observed H

(n)
ij and the

actual MC health D
(n)
ij for various parameter configurations.

The reliability model is valid for any general b, even though
we use b = 2 for the simulations results reported in this paper.
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C. Actuation Model
MEDA biochips support three classes of droplet manip-

ulations: cardinal movement, ordinal movement, and shape
morphing. We define the set of microfluidic actions as A =
Ac ∪ Ao ∪ Am (i.e., A ⊂ {a | a : ∆→ ∆}); here, Ac =
{aN, aS, aE, aW} are movements in the cardinal directions,
Ao = {aNE, aNW, aSE, aSW} are movements in the ordinal
directions, and Am = {a↑, a↓} are morphing transformations
that increase or decrease the droplet’s aspect ratio, respectively.

For an action a ∈ A and a droplet δ(k) ∈ ∆, at time k,
it holds that δ(k+1) = a

(
δ(k)

)
. We define the frontier-set

function Fr(δ; a, d) capturing the subset of MCs that affect
the movement of a droplet δ in direction d ∈ {N,S,E,W} due
to action a (i.e., Fr(•; a, d) : ∆ → P

(
N2

0

)
). Table II shows

the list of microfluidic actions and their respective transfor-
mations and frontier sets. For example, Fig. 4 shows a droplet
δ = (3, 2, 7, 5) actuated under aNE to initiate a movement in
the NE direction. The set of MCs pulling the droplet to the
east and north directions are Fr(δ; aNE,E) = J(8, 3), (8, 6)K
and Fr(δ; aNE,N) = J(4, 6), (8, 6)K, respectively (see Fig. 4).

The degradation level of the MCs used in the movement
(i.e., in the frontier set) impacts the EWOD driving force.
Thus, a microfluidic action may not always result in the in-
tended droplet movement. From (2), the relative EWOD force
exerted on δ in direction d by action a can be estimated as

F̄ (δ; a, d) =
∑

Fr(δ;a,d)
F̄ij =

∑
Fr(δ;a,d)

τ2nij/c.

As a larger EWOD force is more likely to move the droplet
in the intended direction, the probability of whether an action
a successfully moves droplet δ in direction d is a function of
the degradation level of the MCs in Fr(δ; a, d). Assuming that
all MCs in Fr(δ; a, d) equally contribute to the movement, the
probability that droplet δ moves in direction d as a result of
executing a, denoted by p(δ; a, d), can be expressed as

p(δ; a, d) =

{
F̄ (δ; a, d)/|Fr(δ; a, d)| if Fr(δ; a, d) 6= ∅,
0 otherwise.



TABLE II: Microfluidic actions, transformations and frontier sets, where δ=
(xa, ya, xb, yb) and, e.g., x+

a = xa + 1 and x−
a = xa − 1.

a ∈ A a (δ) ∈ ∆ Fr(δ; a, d) , d∈{E,W} Fr(δ; a, d) , d∈{N,S}
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Fig. 5: Model for droplet δ = (xa, ya, xb, yb) showing two microfluidic
actions aE and aNE and their probabilistic transitions, where q = 1− p.

If a is successfully executed on δ(k), the resulting droplet lo-
cation is δ(k+1) = a

(
δ(k)

)
. Otherwise, the droplet location

remains unchanged. Fig. 5 shows part of the droplet model
for actions aN and aNE and their probabilistic transitions.

Consequently, while a droplet δ can be manipulated via
various microfluidic actions, the action outcomes are prob-
abilistic. Moreover, such outcomes also depend on the MC
health matrix H. To accommodate the controller’s choices and
the probabilistic behaviors, we utilize stochastic-multiplayer
games (SMGs) to model the MEDA biochip. Intuitively, in
the MEDA SMG, denoted by G, a droplet controller con-
stitutes the first player, controlling δ, whereas the biochip
degradation constitutes the second player, controlling H. The
SMG comprises a state-space S that captures all the possible
values of δ and H, the set of actions A, and a transition
function γ : ∆ × A × ∆ → [0, 1], where γ(δ, a, δ′) is the
probability that δ′ = a(δ). For example, in Fig. 5 we have
γ(δ, aE, δE) = p(δ; aE,E). Finally, we use G to synthesize
adaptive routing strategies as presented in the next section.

IV. SYNTHESIS FRAMEWORK

For a given bioassay, the sequencing graph (SG) is pre-
processed by a planner that determines the dependencies
and module placements of all microfluidic operations (MOs),
resulting in a list MOs (e.g., see [14]). Each item in the list
is described as MO = (type, pre, loc), where type is the MO
type, pre is the list of predecessor MOs, and loc is the location
where the MO is executed. Table III shows the list of MO types
and the associated number of input and output droplets.

To synthesize routing strategies, we design a RJ handler
that decomposes a given MO into a number of droplets routing
jobs (RJs), each of which stores the information necessary to
synthesize a routing strategy for a single droplet. Formally,
an RJ is a tuple RJ = (δs, δg, δh), where δs is the droplet
start location, δg is the droplet goal location, and δh is the

TABLE III: MO types and the number of droplets (input, output) and RJs.

MO.type Description #Droplets #RJs

dis Dispense a droplet (enter biochip) (0, 1) 0
out,dsc Output/Discard a droplet (exit biochip) (1, 0) 1
mix Mix two droplets (2, 1) 2
spt Split a droplet into two (1, 2) 2
dlt Dilute a droplet using another (2, 2) 4
mag Magnetic-sense a droplet (1, 1) 1

Algorithm 1: Handler Procedure

1 Function HANDLE(Microfluidic operation MO = (type, pre, loc))
Result: Routing job list (RJ)

2 switch MO.type do
3 case dis do MO.RJ[0]← (0, loc[0], loc[0])
4 case out,dsc,mag do MO.RJ[0]← (pre[0], loc[0], loc[0])
5 case mix do
6 MO.RJ[0]← (pre[0], loc[0], ZONE(pre[0], loc[0]))
7 MO.RJ[1]← (pre[1], loc[0], ZONE(pre[1], loc[0]))
8 case spt do
9 MO.RJ[0]← (pre[0], loc[0], ZONE(pre[0], loc[0]))

10 MO.RJ[1]← (pre[0], loc[1], ZONE(pre[0], loc[1]))
11 case dlt do
12 MO0 ← (mix, pre, loc); MO0.RJ← HANDLE(MO0)
13 MO1 ← (spt,MO0, loc); MO1.RJ← HANDLE(MO1)
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hazard bounds for the routing job. Algorithm 1 summarizes
the procedure that the handler follows to convert a given MO
into a set of single-droplet routing jobs (RJ).

Algorithm 2 describes the procedure to formally synthesize
a routing strategy for a routing job RJ and health matrix H(k).
The synthesis starts by using both RJ and H(k) to generate
the associated SMG model G, as described in Section III.
Next, the procedure defines the labels for the goal states
g and hazard states h using the δg and δh of the RJ,
respectively. The synthesis requirement is then formalized as
the temporal query φ : Rmin=? [� (¬h)♦g], which may be
interpreted as “minimize the number of cycles required to
eventually reach a goal state (in g), while never encountering
a hazard state (in h)”. Finally, both G and φ are passed to
a model checker (e.g., PRISM-games [31]) to synthesize an
optimal routing strategy π that maps a droplet location δ ∈ ∆
to an optimal action a ∈ A (i.e., the strategy is a function
π : ∆→ A). The computational complexity of the synthesizer
is O ((W−x)·(H−y)·|A|), where x× y is the droplet size.

Fig. 6 shows the overall data-flow diagram. The planner
provides the list of MOs to the handler to generate the list of
routing jobs. Next, the synthesizer utilizes routing jobs RJ and
the current health matrix H to synthesize the corresponding
routing strategies. The low-level controller combines such
strategies to generate the actuation pattern S at any time.



Algorithm 2: Routing Strategy Synthesis Procedure

1 Function SYNTH(RJ = (δs, δg , δh) , health matrix H)
Result: Strategy π : ∆→ A; expected completion time k ∈ R

2 Initialize model G using H
3 foreach a ∈ A do add γ (δ, a, δ′) to G based on Table II
4 Let g(δ) :

(
xa≥xga

)
∧
(
ya≥yga

)
∧
(
xb≤xgb

)
∧
(
yb≤ygb

)
5 Let h(δ) :

(
xa<xha

)
∨
(
ya<yha

)
∨
(
xb>x

h
b

)
∨
(
yb>y

h
b

)
6 Let φ : Rmin=? [� (¬h)♦g] ; (π, k)← PRISMG (G, φ, δs)

Algorithm 3: Online Scheduler

Input: Microfluidic operations list (MO), k = 0
1 foreach MO do MO.RJ← HANDLE(MO) , MO.state← init
2 while ∃i : MO[i].state 6= done do U← 0; Read Y
3 foreach MO ∈ (MO) do switch MO.state
4 case init do
5 if ∀j : MO.pre[j].state == done then
6 MO.state← active; Read H(k)

7 ∀j : MO.RJ[j].(π, k)← SYNTH
(
RJ[j],H(k)

)
8 case active do
9 if ∀j : MO.RJ[j].δg == δ then MO.state← done

10 else a← π(δ); U(a(δ))← 1

11 Apply U; k++

Algorithm 3 summarizes the online scheduling procedure
for a bioassay. First, the handler populates the list of routing
jobs. Next, the scheduler checks whether any MOs are ready
for execution and, if any, reads the current health matrix
H(k) and forwards the corresponding RJs to the synthesizer to
obtain their routing strategies π. For an active MO, the optimal
action a is retrieved from the current strategy (i.e., a = π(δ)),
and the corresponding MCs are actuated (i.e., U(a(δ)) = 1).
Finally, the actuation matrix U is applied to the biochip, and
the process is repeated until all MOs finish execution.

V. EXPERIMENTAL EVALUATION

We implemented the online scheduler, handler, synthesizer,
and a MEDA biochip simulator in MATLAB. The synthesizer
automatically generated and passed routing jobs to PRISM-
games [31] to obtain routing strategies. Results were obtained
on an Intel Core i7 2.6 GHz CPU with 16 GB RAM. We sim-
ulated four benchmark bioassays in our experiments: Master-
Mix, CEP, Serial Dilution [32], and nucleosome immunopre-
cipitation (NuIP) [15]. NuIP is used for studying the epigenetic
relationship between DNA and its supporting proteins [33].

We first simulated a fabricated MEDA biochip with 30×60
MCs [7]. Each MC followed the reliability model in (1),
with degradation constants c ∈ [200, 500] and τ ∈ [0.5, 0.9],
uniformly sampled within their corresponding intervals to
simulate microelectrode degradation. Once assigned, both c
and τ remained constant during each set of experiments.
Two routing algorithms were implemented; the first algorithm
(baseline) is unaware of degradation and finds the shortest
path to minimize bioassay completion time, while the second
synthesized adaptive routing strategies based on the proposed
framework. Neither approach utilized the error-recovery tech-
niques described in [34], [35] as our goal is to proactively
avoid errors and the cost associated with error recovery.

Since MEDA biochips are fabricated in a CMOS foundry, it
is desirable to reuse them as much possible (e.g., for a panel of
diagnostic tests for the same patient), as opposed to disposable

devices fabricated on a plastic or glass substrate. Therefore, we
examined the likelihood of successfully completing multiple
runs of a bioassay for a given upper limit on the completion
time (kmax). Fig. 7 shows that the proposed method ensures a
significantly higher probability of successful bioassay com-
pletion (PoS) within the given limit on the time-to-result,
especially for longer bioassays. For example, with kmax = 300
cycles, the proposed approach guarantees the PoS for the Serial
Dilution bioassay to be 0.8 compared to 0.1 for the baseline
method. Even with more cycles (e.g., 320), the baseline
method provides a PoS of only 0.7, while the PoS for the
proposed method is 0.99. As expected, the proposed solution
is more effective for longer bioassays. Lower kmax values
imply fewer actuations per bioassay, increasing the number
of successful executions before the biochip fully degrades.

In the next set of experiments, we randomly injected faults
in MCs, wherein a droplet can get stuck at a group of faulty
microelectrodes. The MCs were divided into two groups:
normal and faulty. While both groups follow the degradation
model described in Section III, a faulty MC exhibits a sudden
failure at random actuation n, i.e., D(n)

ij = 0. Moreover,
two modes of fault injection were simulated: uniform and
clustered. In the former, faulty MCs are randomly distributed
across the biochip, while faults in the clustered mode appear
as randomly-placed clusters of four adjacent MCs (2× 2).

Fig. 8 compares the mean number of cycles (k) required to
repeatedly execute each bioassay (referred to as a “trial”) on
the same MEDA biochip (i.e., the same degradation profile)
under different routing strategies and fault-injection modes.
A trial was terminated after five successful executions or if
k exceeded the maximum allowed number of cycles kmax =
1,000, in which case the execution was aborted because of
excessive chip degradation. The probabilistic behavior in the
actuation model implies that every trial uses potentially differ-
ent droplet routes, therefore we also report standard deviation
(SD) values. The results show that the proposed adaptive
method consistently requires fewer cycles to execute a bioas-
say compared to the baseline method. This gap becomes more
pronounced when clustered faults are injected as such clusters
act as roadblocks, obstructing droplet movements. In longer
bioassays (e.g., Serial Dilution and NuIP), trials featuring the
baseline method fail prematurely due to the excessive actuation
of the same set of MCs. In contrast, the proposed method
leads to successful bioassay execution by proactively avoiding
degraded microelectrodes. The mean number of executions to
first failure for the proposed method was greater than five in
all bioassays, while the baseline method failed as early as in
the first execution. Moreover, the relatively small variability
(i.e., SD values) in k for the proposed method indicates its
robustness against various distributions of fault occurrences.

VI. CONCLUSION

We have addressed the problem of microelectrode degra-
dation in MEDA biochips by first introducing a new
microelectrode-cell design that provides the health status of the
microelectrodes. We have presented a stochastic game-based
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Fig. 7: Probability of successful bioassay completion versus the maximum number of cycles.
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Fig. 8: Average number of cycles required to execute a bioassay under different routing strategies and fault-injection modes (standard deviations are indicated).

model for droplet manipulation that incorporates the health sta-
tus, and used it to formally synthesize droplet routing strategies
that dynamically adapt to the real-time microelectrode health
information. Simulation results on four benchmark bioassays
show that the proposed framework reduces the number of
cycles required to successfully complete a bioassay in realistic
microelectrode degradation scenarios.
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