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Formal Synthesis of Adaptive Droplet Routing for
MEDA Biochips*

Mahmoud Elfar, Tung-Che Liang, Krishnendu Chakrabarty, and Miroslav Pajic

Abstract—A digital microfluidic biochip (DMFB) enables the
miniaturization of immunoassays, point-of-care clinical diagnos-
tics, and DNA sequencing. A recent generation of DMFBs uses a
micro-electrode-dot-array (MEDA) architecture, which provides
fine-grained control of droplets and real-time droplet sensing
using CMOS technology. However, microelectrodes in a MEDA
biochip can degrade due to charge trapping when they are re-
peatedly charged and discharged during bioassay execution; such
degradation leads to the failure of microelectrodes and erroneous
bioassay outcomes. To address this problem, we first introduce
a new microelectrode-cell design such that we can obtain the
health status of all the microelectrodes in a MEDA biochip by
employing the inherent sensing mechanism. Next, we present a
stochastic game-based model for droplet manipulation, and a
formal synthesis method for droplet routing that can dynamically
change droplet transportation routes. This adaptation is based on
the real-time health information obtained from microelectrodes.
Comprehensive simulation results for four real-life bioassays
show that our method increases the likelihood of successful
bioassay completion with negligible impact on time-to-results.

I. INTRODUCTION

Digital microfluidic biochips (DMFBs) are being adopted
for biomolecular recognition, point-of-care diagnostics, and
air-quality monitoring applications [1], [2], [3]. A microflu-
idic biochip manipulates tiny amounts of fluids to automat-
ically execute biochemical protocols for point-of-care clini-
cal diagnosis with high efficiency and fast sample-to-result
turnaround [4], [5]. Because of these characteristics, the
Rapid Acceleration of Diagnostics (RADx) initiative from the
National Institutes of Health has recently awarded grants to
several biomedical diagnostic companies to develop microflu-
idic technologies that can dramatically increase COVID-19
testing capacity and throughput [6]. This technology has been
commercialized in recent years for clinical diagnostics and
immunoassays [7], [8].

Micro-electrode-dot-array (MEDA) biochips have been pro-
posed in recent years to further advance DMFB technology [9].
A MEDA biochip manipulates fluids as discrete droplets of
picoliter volume using the principle of electro-wetting-on-
dielectric (EWOD) [10]. In addition, MEDA biochips also
offer fine-grained fluidic control and real-time droplet sensing
on a two-dimensional array of microelectrodes [10], [9].
Multiple microelectrodes can be dynamically grouped to form
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a fluidic module (e.g., splitter or mixer). MEDA biochips have
been fabricated using TSMC 0.35 µm CMOS technology [11].

In the MEDA platform, a real-time capacitive-sensing cir-
cuit is integrated with each microelectrode to detect the
location and properties of a droplet. In each operational cycle,
the sensing circuit discharges and charges the microelectrode,
and measures the charging time. The charging time is used to
detect whether a droplet is present over the microelectrode. To
obtain the positions of on-chip droplets, the sensing results of
all the microelectrodes are shifted out using a scan chain.

Prior work has identified a number of failure mechanisms
for DMFBs [12]. Some of these are related to manufacturing
defects; post-fabrication testing can be used to screen for
such defects [13]. However, charge trapping in the dielectric
layer and degradation of the insulator can result in micro-
electrode degradation [14], [15]. If an electrode is degraded
during bioassay execution, fluidic operations associated with
this degraded electrode will fail, resulting in bioassay fail-
ure [16], [17]. Hence, to reliably execute bioassays on MEDA
biochips, we must proactively avoid the use of degraded
microelectrodes. The majority of literature on reliable execu-
tion of bioassays on both DMFBs and MEDA biochips has
focused on error recovery techniques. Fundamentally, error
recovery techniques aim to reactively recover from errors
in microfluidic operations after they occur. However, error
recovery techniques may require discarding current droplets
and repeating a number of microfluidic operations, potentially
losing expensive and/or hard to reproduce droplets.

In this paper, we address the problem of bioassay failure
due to microelectrode degradation by proposing an adaptive
routing strategy synthesis framework. We first present a new
microelectrode circuit design that provides dynamic health
information about the microelectrode degradation level in
real time. Next, we develop a stochastic game-based model
for MEDA biochips that incorporates the dynamic health
information. The developed model is further used to induce
Markov decision processes (MDPs) to present a scalable for-
mal synthesis method for droplet routing that can dynamically
change droplet transportation routes based on the real-time
health information obtained. The main contributions of this
paper are as follows.

• We introduce a MEDA biochip microelectrode design that
enables the sensing of microelectrode health level in real
time.

• We study how the microelectrode degradation patterns are
affected by droplet characteristics for various bioassays.
We also present experimental results on electrode degra-
dation for fabricated PCB prototypes. These results are
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used to validate the degradation model used throughout
the paper.

• We develop a stochastic game-based model for droplet
manipulation in MEDA biochips that incorporates the
health information obtained from the new proposed de-
sign.

• We propose a formal synthesis framework where MDPs
induced from the developed model are employed in the
automatic synthesis of adaptive droplet routing strategies
that maximize the likelihood of successful bioassay exe-
cution by adapting to the microelectrode health informa-
tion in real time.

• We develop a MEDA biochip simulator based on the
SMG model to evaluate the proposed framework and
present simulation results for six benchmark bioassays.

The rest of this paper is organized as follows. Section II
provides the notation used in this paper, as well as the
necessary background on bioprotocol synthesis on DMFBs,
microelectrode degradation, and error recovery techniques for
biochips. In Section III, we present the new proposed micro-
electrode design and further explore degradation patterns in
MEDA biochips. We also present experimental results on elec-
trode degradation for fabricated PCB protoypes. Section IV
describes both the experimental and theoretical relationship
between microelectrode degradation and the number of actu-
ations. Next, we develop a stochastic game-based model for
MEDA biochips in Section V. Based on the developed model,
we propose an adaptive routing strategy synthesis framework
in Section VI. The experimental evaluation of the proposed
framework is presented in Section VII. Finally, we draw our
conclusions in Section VIII.

II. BACKGROUND

A. Notation

N0 denotes the set of non-negative integers. For a, b ∈ N0,
Ja, bK denotes the discrete interval {x | x ∈ N0, a ≤ x ≤ b}.
For a variable x, x(k) denotes its value at time k ∈ N0. We
use bold symbols for matrices, e.g., M = (Mij) ∈ Rm×n;
here, Mij is the element in the i-th row and j-th column. The
i-th element of a tuple or list w is denoted by w[i−1], i ∈ N0.
For a set A, P(A) is its power set. For a random variable x,
x ∼ U (x1, x2) denotes that x follows a uniform distribution
with the interval [x1, x2] ⊂ R. We use N, S, E and W to
denote north, south, east and west, respectively.

B. Bioprotocol Synthesis on DMFBs

In the DMFB synthesis flow [18], a bioassay protocol with
specified fluidic operations is first developed by biologists.
Next, a synthesis tool maps fluidic operations to fluidic
modules on the electrode array [19], [20]. Droplets need to
be transported as part of the bioprotocol synthesized on the
DMFB. Various droplet-routing methods have been proposed
in the literature [21], [22], [23], [24], including techniques
that are specific to MEDA [25], [16]. However, these methods
do not consider electrode degradation. Recently, reinforcement
learning has been proposed to transport droplets in a reliable
manner [17]. However, this approach does not monitor the

dynamic health condition of electrodes and therefore fluidic
operations associated with degraded electrodes may still fail.

C. Error Recovery Techniques

For both DMFBs and MEDA biochips, the goal of error
recovery techniques is to detect and further correct errors that
occur during a bioassay execution [26], [27]. Techniques in
literature can be categorized based on the type of corrective
action into two groups: retrial and roll-back. In retrial-based
recovery techniques, attempts are carried out to correct errors
detected in a microfluidic operation without discarding the
droplets involved. Depending on the error type, the droplets
involved might get rerouted, reshaped, re-mixed, resplit, or
undergo a combination of these corrective actions.

III. MICROELECTRODE CELL DESIGN

A. MEDA Biochips and Microelectrode Cell

A MEDA biochip is composed of an array of identical
microelectrode cells (MCs) and a controller; the schematic of
an MC is shown in Fig. 1(a). Each MC consists of a micro-
electrode, an electronic control circuit, and a sensing module.
To carry out a bioassay on a MEDA biochip, a synthesis tool is
first used to generate a schedule of fluidic operations, module
placement, and droplet routes for the bioassay [16]. These are
next mapped to a sequence of actuation patterns. The actuation
patterns are sequentially shifted to the MC array through a scan
chain. The MCs are actuated based on the scanned-in data, and
the corresponding fluidic operations are carried out based on
EWOD. After MC actuation, all the MCs are set to the sensing
mode to capture droplet locations. The sensing results are then
scanned out as a bitstream. The process of shifting an actuation
bitstream, MC actuation, droplet sensing, and shifting the
sensing results is referred to as an operational cycle.

B. Microelectrode Degradation and Health Monitoring

MC sensing is used to detect droplet locations by measuring
the capacitance between the top plate and bottom plate. The
controller sets ACT = 0, ACT b = 1, and SEL = 1; it
also connects the top plate to ground. When this happens,
transistors T1, T2, and T4 are switched on while transistor T3
is switched off, the bottom plate is connected to VDD (3.3 V)
and the voltage of the bottom plate increases to 3.3 V. Next,
the control circuit set ACT b = 0, and transistors T1, T3 and
T4 are switched on while transistor T2 is switched off. As a
result, the bottom plate is now connected to ground, and the
voltage of the bottom plate decreases due to discharging. By
applying a rising edge of MC-CLK at a preset time, a value
of “0” or “1” can be stored in the DFF.

A major contributor to microelectrode degradation is the
gradual trapping of charge in the dielectric layer [15], [28],
[29]. Thus, a proactive approach to ensure reliable fluidic
operations is to estimate the degradation status of all micro-
electrodes in real-time and utilize only the healthy ones. To
achieve this, we introduce a new MC design (Fig. 1(b)).

Charge trapping in the dielectric layer results in a higher
capacitance between a degraded microelectrode and the top
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(a) (b)

Fig. 1: Schematics of (a) the original and (b) the new proposed microelectrode circuit models for MEDA biochips.

plate [30]; therefore, we can use capacitive sensing to detect
degradation. An extra D flip-flop (DFF) is added to the MC
design, and the rising edge of the CLK signal for this DFF
is designed to arrive later than that of the other (original)
DFF. For a healthy microelectrode, the 2-bit sensing result
is “11”. If a microelectrode is partially degraded, the charg-
ing/discharging time is slightly less than that of a healthy
microelectrode, and the original DFF is able to capture this dif-
ference by registering a different value compared to the newly
added DFF (“0” versus “1”). If a microelectrode is completely
degraded, the charging/discharging time is significantly lower
than that of a healthy microelectrode, and both DFFs record
“0”. This dynamic 2-bit sensing result provides the health-
status information for the formal analysis model and synthesis
method described in Sections V–VI.

We simulated the new MC design in HSPICE, using the
macro-model for the extended-drain MOS transistors in the
MC and a 350 nm library from a foundry; these models and
parameters match the characteristics of fabricated biochips.
We calculated the capacitance of microelectrodes using the
parameters listed in Table I. The simulation results are shown
in Fig. 2, where the rising edge of the clock signal of the added
DFF needs to be asserted 5 ns later than that of the original
DFF. Note that MCs are fabricated using CMOS technology
and CMOS-based frequency dividers in the range of GHz are
available [31]. Hence, by carefully controlling the rising edges
of the two DFFs, we can dynamically measure the health status
of a microelectrode. The added DFF has no impact on the chip
footprint because its area (∼27 µm2) is much less than the
area of a microelectrode (2,500 µm2) minus the area of the
electronics underneath it (∼88.2 µm2) [9]; the microfluidics
part clearly dominates the overall area of the MC.

C. Degradation Patterns
In this subsection we examine the actuation patterns for

which MC faults appear due to degradation. To this end, we

TABLE I: Notation used for the simulation.

Symbols Description Values

A Area of a microelectrode 50×50 µm2

ϵo Silicon-oil permittivity 19× 10−12 (F/m)
Co Capacitance of healthy microelectrodes 2.375× 10−15 (F)
Cd1 Capacitance of partially degraded microelectrodes 2.380× 10−15 (F)
Cd2 Capacitance of completely degraded microelectrodes 2.385× 10−15 (F)
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Fig. 2: Simulation results for the new microelectrode design.

design a set of experiments where we study the correlation
between the number of actuations for two MCs and the
Manhattan distance between them. In this set of experiments,
we simulated the execution of three bioassays: ChIP, multiplex
in vitro, and gene expression [32], on a 60×30 MEDA biochip.
For each execution, the actuations of an MC at location (i, j)
is recorded as a Boolean vector Aij ∈ {0, 1}N , where N is
the number of operational cycles. The correlation coefficient
between two MCs at locations (i, j) and (k, l) is defined as

ρAij ,Akl
=

cov (Aij , Akl)

σAij
σAkl

,

where cov (Aij , Akl) is the covariance between the two vec-
tors, and σAij

is the standard deviation of Aij .
Fig. 3 shows the simulation results for droplet sizes 3×3, 4×

4, 5×5 and 6×6, and Manhattan distances d ∈ {1, 2, 3, 4, 5}.
The general trend shows an inverse correlation relationship
between the distance between two MCs and the number of
actuations for each. The correlation coefficient is lowest for
droplet size 3× 3, and increases as the droplet size increases.
For the same droplet size, however, the correlation coefficient
is insensitive to the executed bioassay. The results suggest that,
in general, two adjacent MCs are more likely to have similar
number of actuations during execution. This can be explained
by the fact that in MEDA biochips, MCs are typically actuated
in clusters at any given actuation cycle. This implies that faulty
MCs are more likely to appear in clusters as well. Hence,
it is imperative to evaluate the proposed framework against
clustered faults, as we cover later in Section VII.
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Fig. 3: Simulation results for the correlation coefficient versus the Manhattan distance between two microelectrodes.

IV. MICROELECTRODE DEGRADATION MODEL

Given the new microelectrode hardware design, we can
monitor the health level of individual MCs in realtime. In this
section, we study the impact of the MC number of actuations
and its degradation and health levels. Using the obtained
results, we show how to utilize the MC health level to estimate
the EWOD force exerted by the MC on an adjacent droplet.

A. Experimental Assessment of Electrode Degradation

Previous work has shown that charge trapping in a dielectric
layer follows an exponential model [33], [28], [34], [35]. To
independently validate this claim, we design an experiment
where we monitor electrode degradation in a PCB-based digi-
tal microfluidic biochip (DMFB), which manipulates droplets
using the same EWOD principle as MEDA biochips.

The DMFB contains electrodes in three sizes, v.i.z.
2×2mm2, 3×3mm2, and 4×4mm2; see Fig. 4(a). Four
reservoir modules are placed on two sides of the biochip,
and the modules can dispense different reagent droplets. Each
electrode can be controlled individually, and these control
signals come from a control board underneath the DMFB.
For the fabricated DMFB, the activation/de-activation status of
each electrode is controlled by a high voltage relay (Part No.
Panasonic AQW212). Each high-voltage relay IC is controlled
by a configuration bit, and these configuration bits are stored
in the register ICs (Part No. Texas Instrument SN74AHC595).
The hardware setup used to operate the digital microfluidic
biochip is shown in Fig. 4(b). A micro-computer (Part No.
Raspberry Pi 4) on the left is used to generate control signals
to the control board. We used a voltage source of 1.5 KHz
and 200 Vpp to actuate the electrodes. To avoid inducing high
current, a resistor R = 1 MΩ is placed in series between each
electrode and the high-voltage source.

We developed an actuation sequence for the electrodes that
leads to repeated fluidic operations on the biochip. When we
execute the actuation sequence on the DMFB, each electrode
is actuated for 1 s for hundreds of times. After executing the
actuation sequence, we actuated an electrode and measured
the charging times needed using an oscilloscope. Because the
electrode and the top plate form a capacitor, and a resistor
is placed in series with the electrode, the charging path is a

Reservoirs

Control 
Pins Electrodes

(a)

Raspberry Pi 4

DMFB & Control Board

Voltage Source

(b)

Fig. 4: (a) The fabricated DMFB and (b) the experimental setup.

simple RC circuit. The effective capacitance of an electrode
can be derived using the equation

VC(t) = V pp
(
1− e−t/RC

)
,

where C is the effective capacitance of the electrode, VC is the
voltage of the electrode, and t is time. The degradation results
are shown in Fig. 5(a). The results show that the capacitance
of an electrode grows linearly as we repeatedly actuate the
electrode. This increase in the capacitance can be attributed to
charge trapping in the dielectric layer.

In addition to charge trapping in the dielectric layer,
electrode degradation can also result from residual charge,
which happens when an electrode is excessively actuated [36].
Excessive actuation of an electrode substantially increases the
amount of charge that accumulates in the actuated electrode. If
the next electrode is in turn actuated whereas the present elec-
trode has residual charge, the droplet may not be moved toward
the next direction as expected. We design an experiment that is
similar to the previous experiment, but in which each electrode
is actuated for 5 s instead of 1 s. The degradation results
are shown in Fig. 5(b). The results show that the capacitance
of an electrode also grows linearly as we repeatedly actuate
the electrode, but the growth is much faster than that of the
previous experiment.

Note that the microelectrode size of a MEDA biochip is
different from the electrode size of a conventional DMFB.
Nevertheless, our experimental results using fabricated devices
with different electrode sizes show that the relative force on the
electrodes follows the same degradation trend, irrespective of
electrode size. As a MEDA biochip manipulates discrete fluids
using the same EWOD principle as DMFBs, the electrodes and
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Fig. 5: Experimental results for electrode degradation from (a) charge trapping
and (b) residual charge.

relative force of a microelectrode on a MEDA biochip is also
subject to the same degradation mechanism.

The work in [35] showed that the charge trapping phe-
nomenon can be alleviated using a negative actuation voltage,
i.e., AC actuation voltage. However, the mainstream commer-
cialized DMFBs, such as Baebies, use DC actuation voltage
(as in our work) because of simpler design, cheaper cost for
the control circuit, and less concerns about Joule heating [37].

B. Microelectrode Health Model

Based on our experimental results for electrode degradation,
in this section we develop a model that characterizes the
relationship between the number of actuations n and the
microelectrode health level. The EWOD force exerted by a
microelectrode MCij (relative to the same EWOD force at
full health) can be estimated as [16]

F̄
(n)
ij ≈

(
V

(n)
ij /Va

)2

, (1)

where V
(n)
ij is the actuation voltage on MCij (potentially

affected by the MC degradation), and Va is the nominal
actuation voltage. By plugging our experimental results to (1),
the impact of the microelectrode number of actuations and the
relative EWOD force is shown in Fig. 6. We note that there
is a good fit between the model and the measured data. The
model fitting results show that the relationship between the
number of actuation n and the relative EWOD force F̄

(n)
ij can

be modeled as
F̄

(n)
ij ≈ τ2n/c, (2)

where τ ∈ [0, 1] and c ∈ R are constants capturing the MCij

degradation rate. For example, the parameter values in Fig. 6
are (τ2, c2) = (0.556, 822.7), (τ3, c3) = (0.543, 805.5), and
(τ4, c4) = (0.530, 788.4), where R2

adj > 0.94 for all curves.
To deduce the relation between the measured health level

Hij and the number of actuations n, we define the degradation
level of MCij , denoted by Dij , as

D
(n)
ij = V

(n)
ij /Va ≈ τn/c ∈ [0, 1], (3)

where D denotes the MC degradation matrix for the biochip.
Moreover, given a number of bits b ∈ N0 for measuring the
health level (recall that we use two bits in the MC design
in Section III), we define MCij health level, Hij , as

H
(n)
ij = ⌊2b ·D(n)

ij ⌋ = ⌊2b · τn/c⌋,
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where H denotes the MC health matrix for the biochip. Fig. 7
shows the impact of the number of actuations (n) on the
observed H

(n)
ij and the actual MC health D

(n)
ij for various

parameter configurations. The MC health exponentially decays
as the number of actuations increase. The reliability model is
valid for any general b, even though we use b = 2 for the
results reported in this paper.

V. MEDA BIOCHIP MODEL

A. Droplet Model

Consider a MEDA biochip with W × H MCs. A Boolean
matrix of size W × H could be used to capture which MCs
are covered by a droplet. However, a typical MEDA biochip
can have over 1, 800 MCs [16], which would result in a model
with the state-space that is too large for formal synthesis.

Hence, we use the properties of microfluidic operations
to develop a scalable droplet actuation model. Specifically,
we adopt an approach where we model a droplet using the
underlying actuation pattern since the droplet size, shape and
location are tightly coupled with the used actuation pattern. For
example, actuation patterns typically take a rectangular, fully-
filled form where free-roaming of droplets (i.e., leaving them
without actuation) is not allowed; and under- or over-actuation
of droplets is of no use. Thus, by restricting the state-space to
the actuation patterns of interest, we significantly reduce the
model size; thus, enabling runtime formal strategy synthesis.

We use U to indicate the biochip actuation matrix, where
U

(k)
ij ∈ {0, 1} indicates whether MCij is actuated (1) or

not actuated (0) at time k. We model a droplet as a tuple
δ = (xa, ya, xb, yb) ∈ N4

0, where (xa, ya) and (xb, yb) are the
coordinates of the lower-left and upper-right corners (i.e., xb ≥
xa, yb ≥ ya), and Uij = 1 for all (i, j) ∈ Jxa, xbK × Jya, ybK.



6

1 2 3 4 5 6 7 8 9

7

6

5

4

3

2

1

Unactuated MC

Actuated MC

Droplet current location

Droplet model:

Set of actuated MCs:

Fig. 8: MEDA biochip segment with droplet δ at time k.

We use ∆ ⊂ N4
0 to denote the set of all possible droplets. We

also use the center distance between two adjacent MCs as the
unit length when describing droplet geometry. For a droplet
δ = (xa, ya, xb, yb), the droplet width, height and area can be
computed as w = xb − xa +1, h = yb − ya +1 and A = wh,
respectively. We define a droplet’s aspect ratio as AR = w/h.

Example 1 (Droplet Model). Fig. 8 shows a droplet δ(k) =
(xa, ya, xb, yb) where xa = 3, ya = 2, xb = 7 and yb = 5,
i.e., δ(k) = (3, 2, 7, 5). The droplet’s width, height, area and
aspect ratio are w = 5, h = 4, A = 20 and AR = 5/4,
respectively. The biochip actuation matrix satisfies that

U
(k)
ij =

{
1 ∀(i, j) ∈ J3, 7K × J2, 5K ,
0 otherwise.

B. Actuation Model

MEDA biochips support three classes of droplet manip-
ulations: cardinal movement, ordinal movement, and shape
morphing. We define the set of microfluidic actions as A =
Ad ∪ Add ∪ Add′ ∪ A↓ ∪ A↑ where

• Ad = {aN, aS, aE, aW} are single-step movements in the
cardinal directions,

• Add = {aNN, aSS, aEE, aWW} are double-step movements
in the cardinal directions,

• Add′ = {aNE, aNW, aSE, aSW} are movements in the
ordinal directions,

• A↓ = {a↓NE, a↓NW, a↓SE, a↓SW} are morphing transfor-
mations that increase droplet’s width, and

• A↑ = {a↑NE, a↑NW, a↑SE, a↑SW} are morphing transfor-
mations that increase droplet’s height.

Single- and double-step movements aim to move the droplet a
distance of a single and double units (i.e., one or two MCs in
one cycle) in one of the cardinal directions, respectively. While
Ad , Add , and Add′ actions do not change droplet shape, A↓
and A↑ actions aim to change the droplet aspect ratio. Fig. 9
illustrates the microfluidic actions and their impact on droplets.

For an action a ∈ A and a droplet δ(k) ∈ ∆, at time k,
it holds that δ(k+1) = a

(
δ(k)

)
. We define the frontier-set

function Fr(δ; a, d), capturing the subset of MCs that affect
the movement of a droplet δ in direction d ∈ {N,S,E,W} due
to action a – i.e., Fr(•; a, d) : ∆ → P

(
N2

0

)
. Table II shows

the list of microfluidic actions and the respective frontier sets.
Note that Fr is not defined for ordinal directions.

Example 2 (Frontier Set). Fig. 10 shows a droplet δ =
(3, 2, 7, 5) actuated under aNE to initiate a movement in the

TABLE II: Microfluidic actions and their frontier sets, where δ =
(xa, ya, xb, yb), x+ = x+ 1, x− = x− 1, d∈{N,S}, and d′∈{E,W}.

Act. Fr(δ; a, d) |Fr(δ; a, d)| Fr(δ; a, d′) |Fr(δ; a, d′)|

aN Jxa, xbK×
q
y+

b , y+

b

y
xb−xa+1 ∅ 0

aS Jxa, xbK×
q
y−
a , y−

a

y
xb−xa+1 ∅ 0

aE ∅ 0
q
x+

b , x
+

b

y
×Jya, ybK yb−ya+1

aW ∅ 0
q
x−
a , x−

a

y
×Jya, ybK yb−ya+1

aNE

q
x+
a , x

+

b

y
×

q
y+

b , y+

b

y
xb−xa+1

q
x+

b , x
+

b

y
×

q
y+
a , y+

b

y
yb−ya+1

aNW

q
x−
a , x−

b

y
×

q
y+

b , y+

b

y
xb−xa+1

q
x−
a , x−

a

y
×

q
y+
a , y+

b

y
yb−ya+1

aSE
q
x+
a , x

+

b

y
×

q
y−
a , y−

a

y
xb−xa+1

q
x+

b , x
+

b

y
×

q
y−
a , y−

b

y
yb−ya+1

aSW
q
x−
a , x−

b

y
×

q
y−
a , y−

a

y
xb−xa+1

q
x−
a , x−

a

y
×

q
y−
a , y−

b

y
yb−ya+1

a↓NE ∅ 0
q
x+

b , x
+

b

y
×

q
y+
a , yb

y
yb − ya

a↓NW ∅ 0
q
x−
a , x−

a

y
×

q
y+
a , yb

y
yb − ya

a↓SE ∅ 0
q
x+

b , x
+

b

y
×

q
ya, y

−
b

y
yb − ya

a↓SW ∅ 0
q
x−
a , x−

a

y
×

q
ya, y

−
b

y
yb − ya

a↑NE

q
x+
a , xb

y
×

q
y+

b , y+

b

y
xb − xa ∅ 0

a↑NW

q
xa, x

−
b

y
×

q
y+

b , y+

b

y
xb − xa ∅ 0

a↑SE
q
x+
a , xb

y
×

q
y−
a , y−

a

y
xb − xa ∅ 0

a↑SW
q
xa, x

−
b

y
×

q
y−
a , y−

a

y
xb − xa ∅ 0

NE direction. The set of MCs pulling the droplet to the east
and north directions are Fr(δ; aNE,E) = J8, 8K × J3, 6K and
Fr(δ; aNE,N) = J4, 8K × J6, 6K, respectively.

The degradation level of the MCs used in the movement
(i.e., the MCs in the frontier set) impacts the EWOD driving
force. Thus, a microfluidic action may not always result in
the intended droplet movement. From (1), the relative EWOD
force exerted on δ in direction d ∈ {N,S,E,W} by action a
can be estimated as

F̄ (δ; a, d) =
∑

(i,j)∈Fr(δ;a,d)

F̄ij =
∑

(i,j)∈Fr(δ;a,d)

τ2nij/c.

As a larger EWOD force is more likely to move the droplet
in the intended direction, the probability of whether an action
a successfully moves droplet δ in direction d is a function of
the degradation level of the MCs in Fr(δ; a, d). Let Σd =
{N,S,E,W, ϵ} be the event space of executing ad ∈ Ad ,
where ϵ is the event of the droplet not moving. Assuming that
all MCs in Fr(δ; a, d) equally contribute to the movement, the
probability of an event E can be expressed as

p (E | δ, ad) =


F̄ (δ;ad ,d)

|Fr(δ;ad ,d)| E = d,

1− F̄ (δ;ad ,d)
|Fr(δ;ad ,d)| E = ϵ,

0 otherwise.

If ad is successfully executed on δ(k), the resulting droplet lo-
cation is δ(k+1) = ad

(
δ(k)

)
. Otherwise, the droplet location

remains unchanged, i.e., δ(k+1) = δ(k). In case of a double-
step movement add ∈ Add , the probability that the second
step is successful is conditioned on the success of the first
step. Hence,

p (E | δ, add)=



F̄ (δ;ad ,d)
|Fr(δ;ad ,d)| ·

F̄ (δ′;ad ,d)
|Fr(δ′;ad ,d)| E = dd,

F̄ (δ;ad ,d)
|Fr(δ;ad ,d)| ·

(
1− F̄ (δ′;ad ,d)

|Fr(δ′;ad ,d)|

)
E = d,

1− F̄ (δ;ad ,d)
|Fr(δ;ad ,d)| E = ϵ,

0 otherwise.
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Fig. 9: Effect of microfluidic actions on droplets. Blue (solid) markers show initial locations. Red (dashed) markers show locations after successful execution.
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Fig. 10: MEDA biochip segment with droplet δ actuated under microfluidic
action aNE at time k.

δ (xa, ya, xb, yb)

δNE(x
+
a , y

+
a , x

+

b , y
+

b )

δE(x
+
a , ya, x

+

b , yb)

δN(xa, y
+
a , xb, y

+

b )

aNE

q(N | δ, aNE)
·p(E | δ, aNE, )

p(N | δ, aNE)
·q(E | δ, aNE)

p(N | δ, aNE)
·p(E | δ, aNE)

q(N | δ, aNE)
·q(E | δ, aNE)

aE p(E | δ, aE)

q(E | δ, aE)

Fig. 11: Model for droplet δ = (xa, ya, xb, yb) showing two microfluidic
actions aE and aNE and their transitions, where q(E | δ, a) = 1−p(E | δ, a).

where δ′ = ad(δ) is the droplet location shifted by one step
in the same direction. Similarly, the possible outcomes of an
ordinal movement add′ ∈ Add′ are moving in two directions,
one direction, or none, captured by the event space Σdd′ =
{NE,NW,SE,SW} ∪ Σd . The probability of each event can
be expressed as

p(E |δ, add′)=



F̄ (δ;add′ ,d)
|Fr(δ;add′ ,d)|

· F̄ (δ;add′ ,d
′)

|Fr(δ;add′ ,d
′)| E=dd′,

F̄ (δ;add′ ,d)
|Fr(δ;add′ ,d)|

·
(
1− F̄ (δ;add′ ,d

′)
|Fr(δ;add′ ,d

′)|

)
E=d,(

1− F̄ (δ;add′ ,d)
|Fr(δ;add′ ,d)|

)
· F̄ (δ;add′ ,d

′)
|Fr(δ;add′ ,d

′)| E=d′,(
1− F̄ (δ;add′ ,d)

|Fr(δ;add′ ,d)|

)
·
(
1− F̄ (δ;add′ ,d

′)
|Fr(δ;add′ ,d

′)|

)
E=ϵ,

0 otherwise.

Fig. 11 illustrates part of the droplet model, where the
actions aN and aNE and their probabilistic transitions are
displayed. If aNE is executed, the droplet can successfully
move east to δE(x

+
a , ya, x

+

b , yb) with probability p(E | δ, aNE),
or remain at δ(xa, ya, xb, yb) with probability q(E | δ, aNE),
where q(E | δ, a) = 1− p(E | δ, a).

Example 3 (Transition Probabilities). Continuing the running
example, suppose that the frontier set MCs have degrada-

tion values D(8,3:6) = (0.6, 0.5, 0.8, 0.9) and D(4:8,6) =
(0.9, 0.4, 0.9, 0.7, 0.9) as shown in Fig. 10. The probability
of successfully moving the droplet in the NE direction is

p (NE | δ, aNE) =
.9+.4+.9+.7+.9

5
· .6+.5+.8+.9

4
= 0.532.

Similarly, the probability of moving north is p (N | δ, aNE) =
0.168, and east is p (E | δ, aNE) = 0.228.

The morphing actions in A↓ and A↑ aim to decrease
and increase the droplet’s height, respectively. The difference
amongst the actions of each set lies in the direction towards
which the droplet’s width and height are increased or de-
creased (see Fig. 9). For instance, a↓NE decreases the droplet’s
height by increasing its width towards the north-east direction.
In contrast, a↑SW decreases the droplet’s width by increasing
its height towards the south-west direction. The probability of
a morphing action being successful mainly depends on the set
of MCs responsible for pulling the droplet. The frontier sets
of morphing actions is listed in Table II.

In practice, the degree to which a droplet can be successfully
morphed depends on its current size and shape. For instance,
droplet aspect ratio may not go above 2/1 or below 1/2 to
avoid unintentional splitting of the droplet. To model such
constraints, we use guards on actions. A guard on action a is
boolean expression g that represent a necessary condition for
a to be enabled. Let [r/1, 1/r], r ≥ 1, be the allowed range
for droplet aspect ratio. For shape morphing actions a↑ ∈ A↑
and a↓ ∈ A↓, we define two guards

g↑ :
yb − ya + 2

xb − xa
≤ r and g↓ :

xb − xa + 2

yb − ya
≤ r,

respectively. For example, for a maximum aspect ratio r = 3/2
and a droplet δ = (3, 2, 7, 5), g↑ = 1, while g↓ = 0. That is,
a↑ is enabled while a↓ is disabled.

The model also supports moving two steps in a cardinal
direction. Practically, a droplet can be reliably moved a
distance no longer than half its length in one cycle. Hence,
we impose a guard on double-step movements such that they
are only enabled if such condition is satisfied. That is, double-
step movements in the north or south directions are enabled for
droplets with height h ≥ 4, while double-step movements in
the east or west directions are enabled for droplets with width
w ≥ 4. Consequently, the guards gNN, gSS : yb − ya + 1 ≥ 4,
and gEE, gWW : xb−xa+1 ≥ 4 are defined for aNN, aSS, aEE
and aWW, respectively.
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C. MEDA Biochip Model

While a droplet δ can be manipulated via various microflu-
idic actions as discussed earlier in Section V-B, the action
outcomes are probabilistic. Moreover, such outcomes also
depend on the MC health matrix H. To accommodate the
controller’s choices and the probabilistic behaviors, we model
the MEDA biochip using the stochastic-multiplayer games
(SMGs) formalism.

Intuitively, in the MEDA SMG, denoted by G, the game
state is a triplet s = (δ,H, λ), where λ ∈ { 1 , 2 } is the
current player. Let H =

q
0, 2b − 1

yW×H
be the set of all

possible H. The state-space S ⊆ ∆ × H × { 1 , 2 } captures
all possible droplet locations, health states, and players’ turn.
A droplet controller constitutes the first player, 1 , with an
action set A1 = A (see Section V-B). The biochip degra-
dation constitutes the second player, 2 , with an action set
A2 = P ({aij |1 ≤ i ≤ W, 1 ≤ j ≤ H}), where aij is the
action of reducing Hij by one. Note that 2 can simultaneously
take multiple actions (i.e., degrade multiple MCs at the same
time). The initial state s0 = (δ(0),H(0), 1 ) defines the initial
droplet location and health matrix. Finally, the MEDA SMG is
formally defined as the tuple G = (S,A1 ∪ A2, γ, s0), where
γ : S × A1 ∪ A2 × S → [0, 1] is the transition probability
function defined using the transition probabilities previously
described in Section V-B.

Abstracting the biochip degradation as a player with non-
deterministic actions serves two purposes. First, it allows
for modeling a wide range of assumptions regarding the
degradation behavior and fault-injection modes. Second, it
enables the usage of two levels of model fidelity, one suitable
for routing strategy synthesis, and the other for experimental
simulations to validate the former.

Since the health matrix H is visible to the droplet controller,
the resulting SMG is a full-information game. Hence, G can
be used to synthesize droplet routing strategies as described in
Section VI. For simulation, the same model is used, except that
the health matrix H is substituted with the degradation matrix
D. The resulting SMG is an incomplete-information game
since the droplet controller cannot observe D. Further details
on the simulation environment are covered in Section VII.

VI. SYNTHESIS FRAMEWORK

A typical bioassay is comprised of a series of droplet
transportation and microfluidic operations that can be carried
out on a MEDA biochip. In this section, we introduce a
framework for adaptive strategy synthesis using the SMG-
based MEDA model. We first show how to map various
microfluidic operations into a set of droplet routing problems,
called routing jobs. Next, we explore different ways to formal-
ize requirements for routing strategies, and show how to use
such requirements along with the SMG-based MEDA model to
formally synthesize the routing strategies. Finally, we compare
offline and online strategy synthesis methods.

A. Sequence Graphs and Microfluidic Operations

In this paper, we assume that a given bioassay is represented
as a sequencing graph (SG), describing the list of microfluidic

TABLE III: List of microfluidic operations and the corresponding number of
input and output droplets.

MO Type Description #Droplets (In, Out)

dis Dispense a droplet (enter biochip) (0, 1)
out/dsc Output/Discard a droplet (exit biochip) (1, 0)
mix Mix two droplets into one (2, 1)
spt Split a droplet into two (1, 2)
dlt Dilute a droplet using another (2, 2)
mag Magnetically sense a droplet (1, 1)

M1 M2

M3

M4

Dispense Dispense

Mix

Sense

MO type pre loc

M1 dis ∅ (17.5, 2.5)
M2 dis ∅ (17.5, 28.5)
M3 mix {M1,M2} (10, 15)
M4 mag {M3} (40, 15)

Fig. 12: Sequence graph example (left) and the corresponding MO list (right).

operations (MOs). We also assume that the SG is preprocessed
by a planner that determines the dependencies and module
placements of MOs, resulting in an MO list (e.g., see [16]).
Each item in the list is described as MO = (type, pre, loc),
where type is the MO type, pre is the list of predecessor MOs,
and loc∈ [1,W]×[1,H] is the center location where the MO is
executed. Table III summarizes the list of MO types and the
associated number of input and output droplets.

Example 4 (SG and MO List). Fig. 12 shows a simple
sequence graph of four microfluidic operations. M1 and M2
are dispensing operations for 4× 4 droplets (16, 1, 19, 4) and
(16, 27, 19, 30), respectively, they have no predecessor oper-
ations. The center location for M1, for instance, is computed
as ((16 + 19)/2, (1 + 4)/2) = (17.5, 2.5). M3 is a mixing
operation between the two droplets from M1 and M2.

B. Routing Jobs
To synthesize routing strategies, each MO is decomposed

into a set of single-droplet routing problem, called a routing
job (RJ). Each RJ stores the information necessary to syn-
thesize a routing strategy for a single droplet. Formally, an
RJ is a tuple RJ = (δs, δg, δh), where δs is the droplet start
location; δg is the droplet goal location; and δh is the hazard
bounds for the routing job, defining the area within which the
droplet is allowed to move. We design an RJ helper function
that performs the aforementioned decomposition. Algorithm 1
summarizes the procedure that the RJ helper function follows
to convert a given MO into a set of single-droplet routing jobs.

For dispensing operations, δs = (0, 0, 0, 0) since the initial
location of the droplet is outside the biochip, while δg is
where the droplet is dispensed. Note that the droplet size
and shape are inferred from δg (see Section V-A). Since the
dispensing operation is straightforward, the routing strategy is
generated as a movement perpendicular to the edge from which
the droplet is dispensed. For output and discard operations,
however, routing is required for one droplet. The droplet’s
initial location is determined by the end location of the
preceding MO, i.e., δs = δgpre[0]. The end location δg is the last
on-chip location before the droplet exits the biochip through
one of the four edges.



9

In a mixing operation, two droplets are routed from two
different locations, δs0 and δs1, to a single destination δg . In
contrast, a splitting operation features two droplets that are
routed from the same location δs to two different locations,
δg0 and δg1, that can be specified directly by the MO, or
can be automatically placed at locations locpre[0] + disp and
locpre[0]−disp, respectively, where disp is some displacement
from the location where the splitting occurs. A dilution oper-
ation comprises mixing two droplets that start at δs0 and δs1,
followed by a splitting operation, resulting in δg0 and δg1.

To compute the values of δs and δg , the droplet size needs to
be known. For droplet-generating operations (i.e., dispensing),
the desired size is already specified by the MO. For all other
operations, the RJ helper computes the respective droplet
sizes by first computing the droplet area and then obtain the
droplet length and width that provide the minimum error in
the computed area while satisfying the condition |w−h| ≤ 1.

The hazard bounds δh represent the the rectangular area
within which the routing can occur, while the droplet is
forbidden from moving outside such area. Computing δh
depends on the provided scheduler and resource allocation.
In this work, we assume that the hazard bounds are com-
puted as the rectangular area including both δs and δg , in
addition to a safety margin of 3 MCs from each of the four
sides to prevent accidental merging of droplets. That is, for
δs = (xa, ya, xb, yb) and δg = (x′

a, y
′
a, x

′
b, y

′
b), the hazard

bounds are computed as δh = ZONE(δs, δg) where

ZONE(δs, δg) := (min(xa−3, x′
a−3, 1),min(ya−3, y′a−3, 1),

max(xa+3, x′
a+3,W),max(ya+3, y′a+3,H)).

More advanced computations of the hazard bounds can in-
corporate other information such as the droplet size and the
number of concurrent operations.

Example 5 (RJ Helper). Continuing the previous example, let
the dispensed droplets have size 4×4. Table IV shows the list
of MOs and the associated RJs generated by the RJ helper for
a MEDA biochip of size 60×30. Notice that M3 is decomposed
into two routing jobs, RJ3.0 and RJ3.1, with the same goal
location. The mixing operation results in a droplet area A =
32, which is approximated to a 6 × 5 actuation pattern. The
location at which M4 occurs is centered at (40.5, 15.5), and
hence the target location for the corresponding routing job is
estimated as (38, 14, 43, 18).

C. Routing Strategy Synthesis

Let G = (S,A1 ∪ A2, γ, s0) be the MEDA biochip model,
RJ = (δs, δg, δh) be a routing job, and H be the current health
matrix. A droplet routing strategy is a mapping from 1 states
to the set of microfluidic actions A1 = A (see Section V-B),
denoted by π : S1 → A1. The routing strategy problem is
concerned with finding a strategy π such that it satisfies a set of
requirements. For the routing job RJ, the basic requirement is
to for the droplet to eventually reach the goal location δg , i.e.,
a state s = (δg,H, λ), while avoiding the hazard bounds δh.

To formalize this notion, we define two state labels, goal
and hazard , that mark goal and hazard states, respectively.

Algorithm 1: MO-to-RJ Helper Procedure

1 Function MO TO RJ(MO)
Data: Microfluidic operation MO = (type, pre, loc)
Result: Routing job list (RJ)

2 switch type do
3 case dis do RJ[0]← (0, loc[0], loc[0])
4 case out,dsc,mag do RJ[0]← (pre[0], loc[0], loc[0])
5 case mix do
6 RJ[0]← (δgpre[0], loc[0], ZONE(pre[0], loc[0]))

7 RJ[1]← (δgpre[1], loc[0], ZONE(pre[1], loc[0]))

8 case spt do
9 RJ[0]← (δgpre[0], loc[0], ZONE(pre[0], loc[0]))

10 RJ[1]← (δgpre[0], loc[1], ZONE(pre[0], loc[1]))

11 case dlt do
12 RJ[0]← (δgpre[0], loc[0], ZONE(pre[0], loc[0]))

13 RJ[1]← (δgpre[1], loc[0], ZONE(pre[1], loc[0]))

14 RJ[2]← (δgRJ[0], loc[0], ZONE(pre[0], loc[0]))

15 RJ[3]← (δgRJ[1], loc[1], ZONE(pre[0], loc[1]))

16 return (RJ)

Each label is a propositional formula over state-space variables
that can be evaluated as true or false at a given state. For
a routing job where δg = (xag, yag, xbg, ybg) and δh =
(xah, yah, xbh, ybh), the two labels are defined as

goal : (xa ≥ xag) ∧ (ya ≥ yag) ∧ (xb ≤ xbg) ∧ (yb ≤ ybg) ,

hazard : (xa < xah) ∨ (ya < yah) ∨ (xb > xbh) ∨ (yb > ybh) .

Note that goal utilizes inequalities rather than δ == δg to
allow for a less restrictive specification of the goal location.
For instance, a 3×3 droplet may have a 5×5 goal location to
indicate that the goal is to reach anywhere within the specified
location. Using goal and hazard , the linear temporal logic
(LTL) formula φ : □ (¬hazard) ∧ ♢goal captures all possible
executions that satisfy the routing requirement, where the
temporal operator ♢ means eventually true, □ always true.1

Next, the LTL formula can be used to form a synthesis
query. In this work, we explore the usage of two types of
queries, namely, probabilistic and reward-based queries. The
probabilistic query ϕp : Pmax=? [□ (¬hazard) ∧ ♢goal ] can be
used to synthesize a strategy that maximizes the probability
of satisfying φ. By feeding G and ϕp into a model checker,
both an optimal strategy πp (if existing) and the corresponding
probability pmax are obtained.

Similarly, a reward-based query can be used for routing
strategy synthesis. To this end, a reward function r : S1 ∪
A1 → R≥0 is defined to reflect the reward associated with
states and/or actions. For example, the reward function

rk(a) =

{
1 if a ∈ A1,
0 otherwise

tracks the number of cycles (i.e., microfluidic actions) required
to reach the goal location. The reward-based query

ϕr : R
rk
min=? [□ (¬hazard) ∧ ♢goal ]

can be used to synthesize a strategy that minimized the total
expected time (i.e., number of cycles) required to satisfy φ
(i.e., to eventually reach the goal location without encountering
a hazard zone). In contrast to ϕp, synthesizing using ϕr results
in an optimal strategy πr and the corresponding total expected

1More on LTL formulas can be found in [38].
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TABLE IV: Example for converting MOs to RJs for a MEDA biochip of size W × H = 60× 30.

MO type pre loc Size (w × h) Size Error RJ Start Location δs Goal Location δg Hazard Bounds δh

M1 dis ∅ (17.5, 2.5) 16 (4× 4) 0.0% RJ1.0 (00, 00, 00, 00) (16, 01, 19, 04) (13, 01, 22, 07)
M2 dis ∅ (17.5, 28.5) 16 (4× 4) 0.0% RJ2.0 (00, 00, 00, 00) (16, 27, 19, 30) (13, 24, 22, 30)
M3 mix {M1,M2} (10.5, 15.5) 16 (4× 4) 0.0% RJ3.0 (16, 01, 19, 04) (09, 14, 12, 17) (06, 01, 22, 20)

16 (4× 4) 0.0% RJ3.1 (16, 27, 19, 30) (09, 14, 12, 17) (06, 11, 22, 30)
M4 mag {M3} (40.5, 15.5) 32 (6× 5) 6.3% RJ1.0 (08, 14, 13, 18) (38, 14, 43, 18) (05, 11, 46, 21)

Algorithm 2: Routing Strategy Synthesis Procedure

1 Function SYNTH(RJ,H)
Data: RJ = (δs, δg , δh); health matrix H
Result: Strategy π : ∆→ A; expected completion time k ∈ R

2 Initialize model G using H
3 Let goal : (xa≥xag) ∧ (ya≥yag) ∧

(
xb≤xbg

)
∧
(
yb≤ybg

)
4 Let

hazard : (xa<xah) ∨ (ya<yah) ∨ (xb>xbh) ∨ (yb>ybh)
5 Let ϕ : Rmin=? [□ (¬hazard) ∧ ♢goal ]
6 (π, k)← PRISMG (G, ϕ, δs)
7 return (π, k)

time E [rk]. However, the probability of reaching the target is
not directly obtained.

Algorithm 2 describes the procedure to formally synthesize
a routing strategy for a routing job RJ and health matrix H(k).
The synthesis starts by using both RJ and H(k) to generate
the associated SMG model G, as described in Section V. Next,
the procedure defines the labels for the goal states goal and
hazard states hazard using the δg and δh, respectively. A
synthesis query ϕ (such as ϕr) is formulated, and both G and
ϕ are passed to a model checker (e.g., PRISM-games [39],
represented as the function PRISMG) to synthesize an optimal
routing strategy π and the expected number of cycles k. Note
that if π does not exist, PRISMG returns (π, k) = (∅,∞).

The computational complexity of the synthesizer is
O ((W−w)·(H−h)·|A|), where w× h is the droplet size. To
reduce the computational complexity, we apply partial order
reduction to each routing job individually. First, for each rout-
ing job, the state-space is limited to the locations within the
hazard bounds δh = (xah, yah, xbh, ybh). We will use ∆h ⊆ ∆
to denote the set of all possible droplet locations within δh.
In the span of one routing job, the number of actuations
required for a given MC is relatively small. Consequently,
we can assume that the change in H is insignificant after a
single action, rendering the order in which the degradation
actions A2 occur irrelevant to the synthesis problem. By
fixing H to the initial value H0, the SMG is reduced to the
Markov decision process (MDP) GRJ = (Ŝ,A1, γ̂, ŝ0) where
Ŝ ⊆ ∆h × {H0} × { 1 }, γ̂ is defined by the rule
γ̂ ((δ,H0, 1 ), a, (δ′,H0, 1 )) = γ ((δ,H0, 1 ), a, (δ′,H0, 2 ))

and ŝ0 = (δs,H0, 1 ). In this way, the computational com-
plexity is reduced to O ((wh−x)·(hh−y)·|A1|), where wh =
xbh−xah+1 and hh = ybh−yah+1. The impact of the RJ area
and droplet size on the runtime performance of the synthesis
algorithm is further investigated later in Section VII-D.

D. Adaptive Routing Framework

The overall data-flow diagram of the proposed adaptive
routing framework is shown in Fig. 13. The planner provides
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Fig. 13: Data flow diagram for the adaptive routing framework.

the list of MOs to the helper function to generate the list of
routing jobs. Next, the synthesizer utilizes routing jobs RJ and
the current health matrix H to synthesize the corresponding
routing strategies. The low-level controller combines such
strategies to generate the actuation pattern S at any time.

To synthesize a routing strategy, the synthesizer requires the
health matrix value H. Since the degradation characteristics of
the MCs differ from one biochip to another, the exact value of
H is unknown until the current routing job is due for execu-
tion. In an online scheduling scheme, strategies are synthesized
on-demand and whenever H value is available. While such
scheme is straightforward to implement, on-demand strategy
synthesis introduces delays between subsequent microfluidic
operations, which can be undesirable for time-sensitive bioas-
says. On the other hand, in an offline scheduling scheme,
strategies are synthesized offline based on a range of expected
values of H. In runtime, the scheduler retrieves the pre-
synthesized strategy that corresponds to the actual value of
H. While this scheme avoids synthesis delays, synthesizing,
storing and retrieving strategies for all possible ranges of H is
practically intractable. For instance, for a 20×20 biochip with
b = 2 and a 4× 4 droplet, the number of states is |Ŝ| > 1077.

To overcome this problem, we adopt a hybrid scheduling
scheme that takes advantage of both the online and offline
scheduling. In this scheme, a library of pre-synthesized strate-
gies is first created offline for a range of droplet sizes and
assuming no degradation. In runtime, the scheduler checks
whether a strategy is available for the current H and retrieves
it. Next, if a change in H value (i.e., degradation) is detected
during the execution of a routing strategy, the scheduler relays
the new value to the synthesizer to asynchronously resynthe-
size new strategies. Once the new strategies are available, they
replace the previous ones since the value of a H element
cannot regain its previous value once changed.

Algorithm 3 summarizes the procedure for the hybrid sched-
uler. First, the helper function populates the list of routing jobs
for the given MO list, setting their statuses to init. In each
cycle k, the scheduler reads the current sensor measurements



11

Algorithm 3: Hybrid Scheduler Procedure

Input: MO list (MO); offline strategy library LIB
1 foreach MO ∈ (MO) do
2 (RJ)MO ← MO TO RJ(MO), stateMO ← init

3 k ← 0
4 while ∃MO ∈ (MO) s.t. stateMO ̸= done do
5 k++, U← 0, Read H(k)

6 Read Y(k) and update the droplet location δ(k) of each MO
7 foreach MO ∈ (MO) do switch stateMO

8 case init do
9 if ∀MO′ ∈ (pre)MO : stateMO′ == done then

10 stateMO ← active
11 foreach RJ ∈ (RJ)MO : do
12 if a strategy for RJ exists in LIB then
13 (πRJ, kRJ)← LIB(RJ)
14 else
15 (πRJ, kRJ)← SYNTH

(
RJ,H(k)

)
16 Add (πRJ, kRJ) to LIB

17 case active do
18 if ∀RJ ∈ (RJ)MO : δg == δ(k) then
19 stateMO ← done
20 else a← π(δ), U(a(δ))← 1

21 Apply U

Y(k) and health matrix H(k). Next, the scheduler checks if
any MOs are ready for execution by confirming whether their
corresponding predecessors are done and, if any, forwards
the corresponding RJs to the synthesizer to retrieve their
routing strategies. For an active MO, the optimal action a is
retrieved from the current strategy (i.e., a = π(δ)), and the
corresponding MCs are set to be actuated (i.e., U(a(δ)) = 1).
Finally, the actuation matrix U is applied to the biochip, and
the process is repeated until all MOs finish execution.

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

We implemented the online scheduler, helper, synthesizer,
and a MEDA biochip simulator in MATLAB. The synthesizer
automatically generated and passed routing jobs to PRISM-
games [39] to obtain routing strategies. Results were obtained
on an Intel Core i7 2.6 GHz CPU with 16 GB RAM.

The MEDA biochip simulator enables configuring the
biochip width W and height H, in addition to the MC degrada-
tion behavior. In general, a microelectrode MCij is assigned
uniformly sampled degradation parameters cij ∼ U (c1, c2)
and τij ∼ U (τ1, τ2) (see Section IV-B). The simulator gener-
ates two types of MCs — normal and faulty — by sampling the
degradation constants from two different uniform distributions,
with the percentage of faulty MCs being configurable. The way
in which faulty MCs are placed across the biochip depends
on the fault-injection mode selected for the experiment. In
uniform fault-injection mode, the faulty MCs are randomly
placed. In clustered fault-injection mode, however, clusters of
2× 2 faulty MCs are randomly placed.

We simulated six benchmark bioassays in our experiments:
(i) Master-Mix, (ii) CEP, (iii) Serial Dilution [40], (iv) nu-
cleosome immunoprecipitation (NuIP) [17], (v) COVID-RAT,
and (vi) COVID-PCR. The CEP bioprotocol comprises three
bioassays, namely, cell lysis, mRNA extraction, and mRNA
purification. The NuIP bioprotocol is used for studying the

epigenetic relationship between DNA and its supporting pro-
teins [41]. Two COVID-19 tests, namely PCR-based and rapid
antigen-based, are widely used to detect the presence of the
SARS-CoV-2 virus or the body’s response to infection [42].
PCR-based test, which is more accurate, detects small amounts
of viral genetic material. Rapid antigen test, which is only
effective for the first week of infection, detects the presence
of viral proteins.

Fig. 14 shows the control flow of the simulation environ-
ment used in this section. First, the simulator instantiates a
MEDA biochip according to the biochip configuration, the
degradation parameters and the fault-injection mode selected
for the experiment. Next, the online scheduler creates a new
bioassay execution request based on the bioassay selected
for the experiment, and further uses the helper to generate
the list of routing jobs. Once the execution starts, at each
cycle, the scheduler checks whether any MOs are ready for
execution, reads the current health status from the biochip
simulator. The synthesizer uses this information to generate
the corresponding models and synthesis queries, passing them
to the model checker to obtain the synthesized strategies.
Subsequently, the controller uses the current biochip state and
the synthesized strategies to populate the optimal action for
each droplet, aggregate the actuation patterns for the current
control cycle, and further pass the control matrix U to the
biochip simulator. Using the current control matrix U, both
the number of actuations N and the actual degradation matrix
D are updated accordingly. The next state of each droplet is
randomly sampled from the probability distributions described
in Section V-B, the droplets are checked for other conditions
(e.g., merging and splitting), and the next cycle starts. The pro-
cess continues until either the bioassay execution is successful,
or the maximum number of cycles is reached, in which case
the bioassay execution is aborted.

Two routing algorithms were implemented and used for
the experiments in this section. The first (baseline) algorithm
is unaware of degradation and generates the shortest-path
strategy, minimizing the distance traveled by each droplet. The
second (adaptive) algorithm follows the proposed synthesis
framework to synthesize adaptive routing strategies based on
the proposed framework (see Algorithm 2). Neither approach
utilized the error-recovery techniques described in [43], [44] as
our goal is to proactively avoid errors and the cost associated
with error recovery.

B. Probability of Successful Completion
Since MEDA biochips are fabricated in a CMOS foundry, it

is desirable to reuse them as much possible (e.g., for a panel of
diagnostic tests for the same patient), as opposed to disposable
devices fabricated on a plastic or glass substrate. Therefore, we
examined the likelihood of successfully completing multiple
runs of a bioassay for a given upper limit on the completion
time (kmax). We first simulated a fabricated MEDA biochip
with 30× 60 MCs [9]. Each MC followed the reliability
model in (3), with degradation constants c ∼ U (200, 500)
and τ ∼ U (0.5, 0.9), randomly sampled to simulate micro-
electrode degradation. Once assigned, both c and τ remained
constant during each set of experiments.
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Fig. 14: Control flow for the simulation environment.

Fig. 15 shows that the proposed method ensures a signif-
icantly higher probability of successful bioassay completion
(PoS) within the given limit on the time-to-result, especially
for longer bioassays. For example, with kmax = 300 cycles,
the proposed approach guarantees the PoS for the Serial
Dilution bioassay to be 0.8 compared to 0.1 for the baseline
method. Even with more cycles (e.g., 320), the baseline
method provides a PoS of only 0.7, while the PoS for the
proposed method is 0.99. As expected, the proposed solution
is more effective for longer bioassays. Lower kmax values
imply fewer actuations per bioassay, increasing the number
of successful executions before the biochip fully degrades.

C. Fault Injection During Bioassay Execution

In the next set of experiments, we randomly injected faults
in MCs, wherein a droplet can get stuck at a group of faulty
microelectrodes. The MCs were divided into two groups:
normal and faulty. While both groups follow the degradation
model described in Section V, a faulty MC exhibits a sudden
failure at random actuation n, i.e., D

(n)
ij = 0. Moreover,

two modes of fault injection were simulated: uniform and
clustered. In the former, faulty MCs are randomly distributed
across the biochip, while faults in the clustered mode appear
as randomly-placed clusters of four adjacent MCs (2× 2).

Fig. 16 compares the mean number of cycles (k) required to
repeatedly execute each bioassay (referred to as a “trial”) on
the same MEDA biochip (i.e., the same degradation profile)
under different routing strategies and fault-injection modes. A
trial was terminated after five successful executions or if k ex-
ceeded the maximum allowed number of cycles kmax = 1,000,
in which case the execution was aborted because of excessive
chip degradation. The probabilistic behavior in the actuation
model implies that every trial uses potentially different droplet
routes, therefore we also report standard deviation (SD) values.

The results show that the proposed adaptive method consis-
tently requires fewer cycles to execute a bioassay compared
to the baseline method. This gap becomes more pronounced
when clustered faults are injected as such clusters act as
roadblocks, obstructing droplet movements. In longer bioas-
says (e.g., Serial Dilution and NuIP), trials featuring the
baseline method fail prematurely due to the excessive actuation

of the same set of MCs. In contrast, the proposed method
leads to successful bioassay execution by proactively avoiding
degraded microelectrodes. The mean number of executions to
first failure for the proposed method was greater than five in
all bioassays, while the baseline method failed as early as in
the first execution. Moreover, the relatively small variability
(i.e., SD values) in k for the proposed method indicates its
robustness against various distributions of fault occurrences.

D. Synthesis Runtime Performance

In this set of experiments, we examine the runtime perfor-
mance of the synthesis framework. In particular, we observe
the time required for adaptive strategy synthesis under various
droplet and biochip sizes. Moreover, we study the impact of
this time overhead on bioassay executions.

In the formal synthesis of strategies, the time required for
synthesis is impacted by the state-space size, the number of
transitions, and the synthesis query. Hence, we simulate a
range of droplet sizes and hazard areas. Since all microfluidic
operations are reduced to a number of routing jobs, it suffices
to examine the routing jobs directly. The specific values of
the health matrix does not impact the model size, except
for cases where the health is 0 for a number of adjacent
microelectrodes, which can lead to zero-probability transitions.
Thus, we enforce the worst-case scenario by assuming a health
matrix with no zero elements.

Table V shows the range of droplet and biochip sizes used
in the experiments, and the corresponding model sizes. Note
that the RJ area here refers to the size of the area specified
by the hazard bounds of the given routing job, regardless of
the total biochip size. As expected from the synthesis time
complexity (see Section VI-C), for the same routing job area,
the models of smaller droplets are larger in size. The time
required to construct the model constitutes at least 90% of
the total time required for strategy synthesis. For any droplet
size, routing jobs with 20 × 20 or less area requires less
than 3 seconds for strategy synthesis, which is a tolerable
delay for most applications. On the other hand, RJs featuring
larger areas may require as long as 10 seconds before the
corresponding strategy is synthesized. Such delays can be
catastrophic for time-sensitive bioassays; it can also lead to
excessive degradation of MCs that are used to hold the droplets
in place during that time.

TABLE V: Performance results for various droplet and biochip sizes.

Input Size (MC) Model Size Time (sec)
RJ Area Droplet #States #Transitions #Choices Construction Synthesis Total
10× 10 3× 3 67 1,913 697 0.602 0.074 0.675

10× 10 4× 4 52 1,419 525 0.590 0.060 0.650

10× 10 5× 5 39 997 377 0.566 0.058 0.624

10× 10 6× 6 28 647 253 0.548 0.051 0.600

20× 20 3× 3 327 10,813 3,737 2.429 0.175 2.604

20× 20 4× 4 292 9,599 3,325 2.233 0.159 2.392

20× 20 5× 5 259 8,457 2,937 2.105 0.139 2.244

20× 20 6× 6 228 7,387 2,573 1.959 0.136 2.095

30× 30 3× 3 787 26,720 9,066 9.599 0.282 9.881

30× 30 4× 4 732 24,793 8,418 9.193 0.271 9.464

30× 30 5× 5 679 22,938 7,794 8.594 0.264 8.858

30× 30 6× 6 628 21,155 7,194 8.445 0.253 8.698
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Fig. 16: Average number of cycles required to execute a bioassay under different routing strategies and fault-injection modes (standard deviations are indicated).

VIII. CONCLUSION

We have addressed the problem of microelectrode degra-
dation in MEDA biochips by first introducing a new
microelectrode-cell design that provides the health status of
the microelectrodes. We have studied how the microelectrode
degradation patterns are affected by droplet characteristics.
We have also presented experimental results on electrode
degradation for fabricated PCB prototypes, validating the
degradation model throughout the paper. We have developed a
stochastic game-based model for droplet manipulation that in-
corporates the health status, and used it to formally synthesize
droplet routing strategies that dynamically adapt to the real-
time microelectrode health information. Simulation results on
four benchmark bioassays show that the proposed framework
reduces the number of cycles required to successfully complete
a bioassay in realistic microelectrode degradation scenarios.
These results open the door for designing a scheduler that can
optimize the order in which the microfluidic operations are
executed in runtime.
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