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Abstract. Unmanned aerial vehicles (UAVs) have extensive applications in 
both civilian and military applications. Nevertheless, the continued develop-
ment of UAVs has been accompanied by security concerns. UAV navigation 
systems are potentially vulnerable to malicious attacks that target their Global 
Positioning System (GPS). Thus, efficient GPS hacking detection with high 
success rate is paramount. Significant effort has been put into developing au-
tonomous hacking detection techniques. However, little research has considered 
how a human operator can contribute to the security of such systems. In this pa-
per, we propose a human-autonomy collaborative approach for a single operator 
of multiple-UAV supervisory control systems, where human geo-location is 
used to help detect possible UAV cyber-attacks. An experiment was designed 
and conducted using the RESCHU-SA experiment platform to evaluate this ap-
proach. The primary results show that 65% of all experiment sessions reached 
over 80% success rate in UAV hacking detection, while only 17% of partici-
pants lost one or more UAVs because of incorrect hacking detections. These re-
sults suggest that such an approach could help achieve better security guaran-
tees for human-in-the-loop autonomous UAV systems that are prone to cyber-
attacks. 

Keywords: Unmanned Aerial Vehicles, Cyber-Attack Detection, Human Geo-
location. 

1 Introduction 

Unmanned aerial vehicles (UAVs) have significantly increasing commercial market 
and extensive applications in both civilian and military realms [1]. Many of these 
UAVs rely on the Global Positioning System (GPS) for navigation, however, this 
reliance leaves UAVs vulnerable to malicious attacks targeting GPS signals. One 
common attack is GPS spoofing, in which attackers deceive GPS receivers to override 
the navigation systems and redirect UAVs to unexpected destinations [2] [3]. A well-
known such incident garnered public attention in 2011 when, a US RQ-170 Sentinel 
UAV was captured by Iranian forces using GPS spoofing attacks [4]. Thus, detecting 
GPS spoofing attacks with a high success rate is important for UAV control systems. 

We propose a human-autonomy collaborative approach of human geo-location in 
that humans can aid in the detection of possible GPS spoofing attacks on UAVs. This 



approach was evaluated via an experiment, which was designed and conducted using 
the Research Environment for Supervisory Control of Heterogeneous Unmanned 
Vehicles (RESCHU) platform. Experiment sessions simulated human supervisory 
multi-UAV control scenarios with potential UAV GPS spoofing attacks. In this paper, 
we focus on answering the following questions based on the experiment results: 1) 
Can human operators successfully identify UAV GPS spoofing attacks? 2) What fac-
tors affect human operator general operation? 3) Would hacking detections affect the 
performance of operators’ primary tasks? 4) What types of landmarks used in human 
geo-location affect operator decisions to hacking detections? 

2 Background 

A common UAV control scheme is human supervisory control, in which a human 
operator monitors the multi-UAV system, intermittently navigating UAVs, and con-
ducting other higher-level tasks [5]. The architecture of human supervisory UAV 
control is shown in Figure 1. Human supervisory UAV control can be introduced with 
various level of automation. In this study, we assume that human operators are re-
sponsible for higher-level decision, and autonomous systems are in charge of lower-
level UAV control and navigation operations [6]. 

 
Fig. 1. Human supervisory UAV control architecture. 

2.1 GPS Spoofing Detection 

UAVs typically rely on an embedded navigation system known as GPS, which pro-
vides accurate position, velocity and time information for GPS receivers in most areas 
on Earth. GPS receivers calculate precise latitude, longitude and height with speed 
information based on the received satellite signals. Furthermore, GPS receivers can 
report their locations to UAV control interface to provide location views for opera-
tors. However, GPS receivers are vulnerable to GPS spoofing attacks, in which GPS 
spoofers generate counterfeit signals to attack GPS receivers by manipulating the 
target position, velocity and time information [2] [3]. 

Many researchers have presented autonomous GPS spoofing detection methods [7] 
[8] [9] [10] [11] [12], however, false alarms and detection mistakes still exist while 



applying autonomous detection techniques [13] [14]. Thus, supplementary detection 
methods are needed. 

In the common design of military UAVs, a UAV is usually equipped with both a 
GPS navigation system and a payload camera, whose signal is independent of the 
UAV GPS signal [15]. Thus, the UAV payload camera view could be used as an in-
dependent reference for detection of GPS spoofing (i.e., navigation based) attacks, 
which is further explored in the remainder of this paper. 

2.2 Human Visual Task 

In order to utilize a UAV payload camera to detect UAV GPS attacks, interpreting the 
UAV real-time location through the camera view and comparing this to a certain 
landmark or position estimate from a map could be the central mechanism for making 
such an assessment. 

 
Fig. 2. An example of GPS reported location on the map. 

 



While autonomous localization techniques may have limited performance [16] 
[17], human vision has advantages in such complex search and surveillance tasks. The 
process of human vision obtaining information from objects can be divided into two 
stages. The first stage is the preattentive stage, in which human observers can gather 
basic information about the target even before the observer become conscious of it 
[18]. Thus, human vision can process target information relatively fast in complex 
environment. Human observers also tend to choose areas that maximize information 
of the target in salience-driven visual search strategy [19], which means human vision 
has effective strategies to obtain target information. In addition, the direction discrim-
ination threshold of human vision has a low average of 1.8 degrees [20], which means 
human vision can detect relatively small changes in orientation. Based on these visual 
advantages, a human operator can potentially aid in UAV localization and thus detect 
potential UAV GPS spoofing attacks. 

Based on the assumption that UAV cameras can show the true surrounding scene 
of UAVs, we propose that human operators can act as supplementary sensors and 
assist autonomous system to detect UAV hacking attacks through comparative geo-
location between the camera and map position estimates. In human geo-location, the 
operator can compare the non-tempered video feed coming from the UAV to the po-
tentially falsified GPS location; this allows the user to detect inconsistencies between 
these two sensing feeds (i.e., whether the feed and the reported locations match). If 
the operator thinks the location interpreted from camera view does not match the loca-
tion shown on the map, then the UAV is most likely hacked via GPS spoofing. 

An example of applying human geo-location in UAV hacking detection is shown 
in Figure 2. If the UAV is hacked, the operator will observe a location other than the 
GPS reported UAV location through the camera, like shown in the upper left camera 
view in Figure 2. When a GPS spoofing attack is discovered, the operator can prevent 
a hacking event by overriding its physical control. 

3 Experiment 

An experiment was designed utilizing a modified version of the RESCHU experiment 
platform [21], known as Security-Aware RESCHU (RESCHU-SA) [22]. RESCHU-
SA is a Java-based single operator with multi-UAV supervisory control simulation 
platform, which provides the capability to design multi-tasking scenarios that include 
both navigational and imagery search tasks. Moreover, the platform allows for simu-
lating GPS spoofing attacks, in which hacked UAVs deviate from their originally 
assigned path and target to other unexpected destinations, along with warning notifi-
cations that simulate autonomous GPS spoofing detection systems. 

3.1 Experiment Platform Interface 

The interface of the RESCHU-SA platform is shown in Figure 3. The interface fea-
tures five main components: the payload camera view, message box, control panel, 
mission timeline and map area. 



• The camera view displays the video stream from the payload camera of the select-
ed UAV. The primary purpose of this view is to conduct real-time image analysis 
tasks. In this study, it can also be used to determine the actual location of UAVs by 
locating landmarks. 

• The message box displays events that occur during the simulation such as UAV 
arrival at a target. It also allows operators to communicate the results for the im-
agery analysis tasks to a “supervisor” that is, in actuality, a bot. 

• The control panel provides the UAV damage level, which is caused by UAVs in-
tersecting with hazard areas, as well as instructions for imagery analysis tasks and 
vehicle updates. 

• The timeline shows the estimated remaining time of all UAV arrivals at waypoints 
and assigned targets. 

• The map displays the area of surveillance with real-time locations of all UAVs, 
hazard areas and targets. For this experiment, the map was created using CityEn-
gine from ArcGIS, a modeling software package that is used for urban planning 
and architecture design. 

 
Fig. 3. RESCHU-SA operator interface. 

3.2 Experiment Scenarios 

The primary objectives for operators in RESCHU-SA are to control multiple UAVs 
to: 1) perform reconnaissance imagery tasks of counting road intersections when 
UAVs reach assigned targets, 2) ensure UAVs do not encounter hazard areas, and 3) 
determine whether UAVs are under GPS spoofing attacks. 

For this experiment, GPS spoofing attack events followed a pre-defined schedule, 
unknown to the participants. When triggered internally, the hacked UAV changed its 
heading by a random angle within 30 to 60, or 300 to 330, degrees, which was larger 



than the human direction discrimination threshold. A hacking notification appeared 10 
to 20 seconds after the attack event, simulating an external agency detection of a pos-
sible GPS spoofing attack. However, as in real systems, the notification could be a 
false alarm. In fact, about half of all notifications in this experiment were false alarms 
in the pre-defined schedule of each test session. Although change blindness and vigi-
lance declination [23] [24] are known problems for humans in such settings, they 
were not examined in this study, given there was a clear signaling of a potential hack-
ing event. Thus, a detection failure on the part of the human is not considered in this 
experiment. 

Once the operator received notification from the system that a certain UAV was 
under possible cyber-attack, the operator could then investigate the UAV by checking 
the UAV’s camera view and matching it against the position of the UAV on the map. 
The operator was expected to make a decision before the hacked UAV either exceed-
ed the map boundary or the experiment ended. If the operator decided the UAV was 
hacked, the operator could override the hacked UAV and send it home. 

When UAVs that were not hacked reached a target, the operator engaged in an im-
agery task of counting the road intersections from the UAV’s camera view at a pre-
specified zoom level. This side task represents the primary purpose of such a mission, 
which is typically information gathering. While engaging in a counting task, the oper-
ator was required to enter an answer before the counting task was finished. The count-
ing task allowed us to assess participants’ performance based on the number of at-
tempted tasks and the task correctness percentage. 

The path planner for the UAVs was intentionally suboptimal, i.e. the planner did 
not necessarily pick the most efficient assignment of UAVs to targets. In addition, 
UAVs would possibly encounter hazard areas that appeared and disappeared random-
ly. The suboptimal planner and the dynamic nature of hazard areas allowed experi-
menters to assess how much spare attention participants could devote to optimize the 
navigation and target assignment. 

3.3 Experiment Participants 

Thirty-six participants took part in this experiment, including 22 males and 14 fe-
males. Age ranged from 19 to 34 years with an average of 25.2 and a standard devia-
tion of 3.8 years. Among the participants, 18 had little video game experience, 6 par-
ticipants had monthly gaming experience, 5 participants played video game several 
times a week, another 5 participants had weekly gaming experience, and only 2 par-
ticipants had daily gaming experience. 

3.4 Experiment Procedure 

The experiment procedure consisted of four main sections. The first section was a 
self-paced tutorial session, during which participants went over the tutorial slides, and 
the experimenter answered questions that the participants might have had. The second 
section was a practice session to allow participants to get more familiar with the user 



interface. In the first half of the practice session, participants were shown how to op-
erate UAVs and complete all major tasks. 

In the second half, participants controlled all UAVs and accomplished different 
tasks by themselves. The practice session lasted 18 minutes, which was the same as a 
single experiment session. The third section included the test sessions with two sce-
narios of different task loads, which were counterbalanced in terms of order of 
presentation. The fourth section was the debriefing session, in which the experimenter 
asked the participant several questions related to participants’ performance and strate-
gies for navigating UAVs and detecting hacking events. 

Given that many related studies on the RESCHU platform [21] [25] [26] showed a 
significant impact of task load on system performance, task load was a primary factor 
in this experiment looking at hacking detection. It should be noted that high task load 
does not necessarily represent high operator mental workload, since operator mental 
workload is an individually subjective interpretation of an objective task load. 

Thus, for a high task load scenario, operators controlled 6 UAVs with 9 different 
targets and 9 hacking events, and in each low task load scenario, operators controlled 
3 UAVs with 6 different targets and 6 hacking events. In both scenarios, the number 
of hazard areas, which generated and disappeared randomly, was constantly twenty-
one. Each test scenario lasted 18 minutes, and each participant completed both high 
and low sessions. Each participant’s performance scores were calculated based on the 
total vehicle damage, the correct percentage of imagery counting tasks, and the cor-
rect percentage of hacking identifications. 

4 Results 

4.1 Performance statistical results 

We used a multivariate repeated-measures ANOVA model and Pearson correlation 
with a significance level of 0.05 to analyze data. In data analysis, independent varia-
bles included task load, which task load was experienced first, gender and video game 
experience as a covariate. Task load (low and high) was a within factor variable. De-
pendent variables included percentage of correct hacking detections, the aggregated 
damage sustained by vehicles over a test session, and the overall correct percentage 
intersection counts per test session. These variables represent the primary objectives 
of performing the counting tasks, keeping vehicles out of the damage areas, and suc-
cessfully detecting hacking events. 

Table 1. The confusion matrix of hacking detection decisions in different notifications. 

 Real hacking 
notification 

False alarm 
notification 

Consider UAV hacked 224 40 
Consider UAV not hacked 63 207 

 



An important question was whether human operators could successfully detect the 
UAV hacking events. A successful detection was indicated by a correct decision for a 
specific hacking event, including overriding the UAV and sending it home if the 
UAV was hacked, or recognizing the notification was a false alarm. 

Each high task load experiment session included 9 hacking events, and each low 
task load session included 6 hacking events. Among all hacking events in both test 
sessions for each participant, 7 (4 in high task load and 3 in low task load) were pre-
defined as false alarms, which meant the threshold for incorrect hacking notifications 
was 47%. As shown in Table 1, out of all real hacking notifications across all partici-
pants, the overall success rate was 78%, and for the false alarms, the success rate was 
84%. In other word, the type one error (false positive, operators considered UAV not 
hacked with real hacking notification) was 22%, which was slightly higher than the 
type two error (false negative, operators considered UAV hacked with false alarm 
notification) of 16%. Thus, operators were slightly better at detecting false alarms 
than identifying real hacking notifications. 

When looking at each individual’s performance per test session, even though they 
had to multitask in RESCHU-SA in managing multiple vehicles and detecting poten-
tial hacking events, results showed that 23 out of total 72 experiment sessions (32%) 
resulted in 100% of successful hack identifications in a single test session, with an-
other 24 (33%) above 80% successful attack identification. Thus, 65% of total exper-
iment sessions exhibited 80% correct hacking detection or better without having any 
prior formal training. In terms of incorrect hacking identifications, 12 (17%) partici-
pants lost one or more UAVs, meaning that these UAVs were successfully hacked 
and could not be further controlled. 

Additionally, those factors that affected human operators’ performance were stud-
ied. For the three performance scores of vehicle damage, the correct percentage inter-
section counts, and correct percentage of hacking events, the only variable affected by 
task load was vehicle damage ((F(1,31)=32.93), p<0.001). In the high task load sce-
nario, the average UAV damage was 31.4, which was much higher than 9.6 in the low 
task load scenario. Participants with less workload suffered less damage as they had 
more time to optimize their paths and avoid hostile areas. 

One result showed an interesting significant negative correlation between the time 
expended in hacking detections and correct hacking detections (Pearson=-0.375, 
p=0.001), which meant that participants who took longer to detect the hacking events 
had a lower percentage of correct hacking identifications. This suggests that early 
detection was better from the operator standpoint, which is at odds with those who 
would argue that longer detection times should yield more correct identifications. 

Gender was examined because of the potential difference in self-assessment in 
cognitive tasks between different genders [27]. However, gender did not affect the 
participants’ general performance. Another covariate, the video game experience, did 
have a significant effect on participants’ correct hacking detections (F(1,31) = 4.652 p 
= 0.039). This means that the more video game experience, the higher the chance of a 
correct hacking detection. Not surprisingly, seven participants who lost UAVs had no 
video game experience, and the other 5 who lost UAVs ranged from some to moder-



ate gaming experience. Participants with daily gaming experience did not lose any 
UAVs and were 100% correct in hacking identification. 

Another result showed that participants’ task inputs were effective in that the more 
time they navigated the UAVs, the less time UAVs intersected with hostile areas 
(Pearson=-0.345, p=0.003). This result suggests that improved path planning could 
reduce operators’ workload and free their cognitive resources to attend to other tasks. 

We also investigated whether hacking detection affected the performance of opera-
tors’ primary tasks of counting road intersections. The results showed that the cor-
rectness of imagery counting tasks was not affected by either the correctness of hack-
ing detections (Pearson=-0.022, p=0.854) or the time expended in hacking detections 
(Pearson=0.024, p=0.841). However, time expended in the imagery task was nega-
tively correlated with the percentage of correct hacking detection (Pearson=-0.275, 
p=0.019). This result was expected as participants who spent more time in counting 
tasks were less likely to detect hacking events. 

In addition, an interesting observation is that the first experiment scenario affected 
participants’ abilities to correctly finish their primary task of counting the intersec-
tions at each target (F(1,31)=5.324, p=0.028). The participants who had the high task 
load scenario as the first experiment session tended to have higher correct intersection 
count percentages. This suggests a fatigue effect since these participants did worse on 
their second scenarios with low task load, which should have been easier. 

4.2 Map analysis for hacking detection 

While using human geo-location in UAV hacking detections, operators will compare 
the non-tempered UAV camera video feed to the potentially falsified GPS location to 
detect inconsistencies between the UAV video feed and UAV GPS location. After 
receiving a hacking notification, operators can purposely navigate the notified UAV 
to some specific areas that can potentially provide more inconsistencies to increase 
the confidence of making a correct decision to a hacking event. Thus, analyzing the 
map usage in hacking detections will benefit the future design of autonomous deci-
sion supporting tool for hacking identification. 

The resulting heat map, which represents the frequency distribution of areas of par-
ticipant interest during hacking detections, is shown in Fig 4. Different colors repre-
sent varying frequency of operations, including adding waypoints and switching tar-
gets for UAVs, on a specific point. The warmer the color, the more participants inter-
acted with a specific point, for example, red represents 5 or 6 operations. The heat 
map shows that the lower left quadrant is the most popular region, however, some 
regions, like the middle right of the map, have few operations. Understanding that the 
density of targets on the lower left quadrant of the map is slightly higher than other 
regions, this quadrant is more attractive to operators since operators can navigate 
UAVs between targets to get engaged to more imagery tasks in a shorter time range. 
Thus, more operations occurred on the lower left quadrant. In addition, red areas on 
this quadrant indicate the existence of some interesting landmarks that operators tend 
to investigate during hacking detections. 



 
Fig. 4. The heat map of reference points in UAV hacking detection. 

Table 2. The frequency of different types of landmarks used in hacking detections. 

 Special road 
patterns 

Geographic 
feature transition 

Special 
buildings 

Occurrence frequency 380 152 109 
Occurrence percentage 59.3% 23.7% 17.0% 

 
Landmarks used in hacking detections are classified into three categories, includ-

ing special road patterns, geographic feature transition, and special buildings, like 
shown in Table 2. Using these different landmarks in hacking detections, operators 
can investigate the moving orientation of a certain UAV or the relative motion be-
tween a UAV and a specific landmark to investigate whether a UAV is potentially 
hacked. Shown in Table 2, special road patterns were the most frequently used land-
marks in hacking detection with an occurrence percentage of 59.3%. 



Geographic feature transitions are defined as the transition between land and sea 
areas, on which operators can clearly observe the sudden change of geographic pat-
terns. Special buildings are defined as distinctive shapes with contrastive colors that 
are used to represent a single building or a group of buildings on the map. As the 
percentage of total special road patterns and special buildings are approximate the 
same, special road patterns are more attractive to operators. Future work will deter-
mine why exactly people prefer these over other options, but one hypothesis is that 
these are easier to see than the buildings, and do not take as long to investigate as the 
sea/land transitions. 

Table 3. The frequency of different landmarks used in different detection decisions. 

 

Real hacking notification False alarm notification 

Consider 
UAV hacked 

Consider 
UAV not 
hacked 

Consider 
UAV hacked 

Consider 
UAV not 
hacked 

Special road 
patterns 168 25 28 159 

Geographic 
feature transitions 69 17 14 52 

Special buildings 42 13 8 46 

 
The frequency of different landmarks used in different detection decisions were 

examined. In correct hacking detections with both real hacking and false alarm notifi-
cations, the percentage of operations based on special road patterns is slightly over 
60%, which is higher than the percentage in incorrect hacking detection with real 
hacking notification (45.5%) and false alarm notification (56.0%). Another interesting 
fact is that special road patterns lead to the highest success rate of 86.1% in hacking 
detections, while geographic feature transition lead to 79.6% and special buildings 
lead to 80.7%. These results provide insight for how a future advanced map-based 
hacking detection support tool for human operators could be designed. 

5 Discussion 

The experiment results provide insight into our initial questions with implications for 
future studies. In this study, we analyzed if a human operator could serve as a sup-
plementary sensor in supervisory UAV control systems by successfully detecting 
spoofing attacks. Experiment results supported this hypothesis in that 65% of total 
experiment sessions reached over 80% hacking detection correctness. This result was 
achieved with no dedicated training and so greater emphasis on optimal search strate-
gies would likely yield even better results. 

The experiment results also clearly indicate that some factors affected operators’ 
performance and operations. For example, higher task load tended to cause more 
UAV damage. This result was supported by a previous study that higher mental work-



load increased operator attention switching delays [21]. In high task load scenarios, 
operators tended to experience higher mental workload, which slowed down their 
attention switches and causing more damage. This could be mitigated in future studies 
with more optimal path planning as well as better target allocation. 

Understanding that the operator’s video game experience significantly affected the 
success rate in hacking detections, future personnel selection strategies for superviso-
ry control systems with human visual tasks could focus more on the experience in 
similar applications or more training. This fact also raises interesting future research 
questions, including how video game experience may affect human search strategies 
and how different types of video games may affect human operators’ performance in 
hacking detection? Also, the result of the negative correlation between the time ex-
pended and the success rate in hacking detection provides implications for future 
studies of increasing hacking detection correctness by guiding better search strategies 
and earlier detections. However, a fatigue effect was potentially exhibited after just 
one 18-minute scenario, which raises the question of how sustainable such task load 
levels are over time? 

The map analysis shows the heat map of participants preferences for hacking detec-
tion. Although the usage percentages of different landmarks in different hacking de-
tection decisions are similar, there was a clear preference for unusual road intersec-
tions. These results provide some insights on a more efficient way to utilize different 
landmarks and raise future research topics of investigating potential different operator 
hacking detection strategies. 

Lastly, all these results establish a baseline of performance of applying human geo-
location in UAV hacking detection. Future studies, enabled by an empirical model of 
security-aware human-autonomy interaction will focus on how higher-level automa-
tion or advanced decision support tools could be utilized to assist human operators to 
improve the success rate of hacking identifications. 

6 Conclusion 

Navigational GPS systems used in UAVs can be prone to malicious cyber-attacks, 
especially GPS spoofing attacks. In this study, we have shown that a human operator 
can assist autonomous systems in hacking detection using human geo-location com-
parison between maps and downward-facing camera views, even without extensive 
training. Moreover, we found that an individual factor, video game experience, and 
the time expended in hacking detection and UAV navigation, affected operators’ 
hacking detection performance. The results from this study indicate that human geo-
location is a potentially promising approach for hacking detection, which could be 
improved by future efforts in improving operator decision support. 
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