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Abstract—An increasingly relevant security issue for unmanned
aerial vehicles (UAVs, also known as drones) is the possibility of
a global positioning system (GPS) spoofing attack. Given the ex-
isting problems in current GPS spoofing detection techniques and
human visual advantages in searching and localizing targets, we
propose a human-autonomy collaborative approach of human geo-
location to assist UAV control systems in detecting GPS spoofing
attacks. An interactive testbed and experiment were designed and
used to evaluate this approach, which demonstrated that human-
autonomy collaborative hacking detection is a viable concept. Us-
ing the hidden Markov model (HMM) approach, operator behavior
patterns and strategies from the experiment were modeled via hid-
den states and transitions among them. These models revealed two
dominant hacking detection strategies. Statistical results and ex-
pert performer evaluations show no significant difference between
different hacking detection strategies in terms of correct detection.
The detection strategy model suggests areas of future research in
decision support tool design for UAV hacking detection. Also, the
development of HMMs presents the feasibility of quantitatively
investigating operator behavior patterns and strategies in human
supervisory control scenarios.

Index Terms—Cyber-attack detection, hidden Markov model
(HMM), human geo-location, human supervisory control, strategy
classification, unmanned aerial vehicle (UAV).

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have significantly in-
creasing use in commercial and military applications. The

continued growth in numbers and functionalities of UAVs has
been accompanied by many security, privacy, and regulatory
concerns. One common security concern is UAV global po-
sitioning system (GPS) spoofing, in which attackers deceive
GPS receivers by providing counterfeit GPS signals in order
to override UAV navigation systems and redirect UAVs to un-
expected destinations [1], [2]. One such well known incident
garnered public attention in 2011 when an RQ-170 Sentinel
UAV was captured using GPS spoofing attacks [3]. Therefore,

Manuscript received April 1, 2018; revised August 26, 2018; accepted
November 17, 2018. Date of publication February 26, 2019; date of current
version November 21, 2019. This work was supported in part by the NSF under
Grant CNS-1652544 and in part by the ONR under Agreement N00014-17-
1-2012 and Agreement N00014-17-1-2504. This paper was recommended by
Associate Editor M. L. Bolton. (Corresponding author: Haibei Zhu.)

H. Zhu, M. Elfar, and M. Pajic are with the Department of Electrical and
Computer Engineering, Duke University, Durham, NC 27708 USA (e-mail:,
haibei.zhu@duke.edu; mahmoud.elfar@duke.edu; miroslav.pajic@duke.edu).

M. L. Cummings, and Z. Wang are with the Department of Mechanical
Engineering and Materials Science, Duke University, Durham, NC 27708 USA
(e-mail:,mary.cummings@duke.edu; ziyao.wang@duke.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/THMS.2018.2888578

successfully detecting GPS spoofing attacks is important for
UAV control systems.

Understanding that human vision has advantages in com-
plex searching and localizing tasks [4]–[6], we demonstrated a
human-autonomy collaborative approach through geo-location
in which humans can assist autonomous systems in the detec-
tion of possible GPS spoofing attacks on UAVs. In this study,
this approach was evaluated via an experiment, which was de-
signed and conducted using the security-aware research envi-
ronment for supervisory control of heterogeneous unmanned
vehicles (RESCHU-SA) platform [7], extension of the platform
from [8]. Experimental sessions simulated human supervisory
multiUAV control scenarios with potential UAV GPS spoof-
ing attacks. Operators were able to successfully detect hacking
events such that 65% of total experimental sessions exhibited
at least 80% correct hacking identification. We also discovered
that operators with significant video game experience were the
best performers in hacking detection [9].

While this initial study demonstrated that human operators
could successfully identify UAV GPS spoofing attacks through
geo-location, given that such research has never before been con-
ducted, our goal is to better understand what strategies emerged
as novices attempted to determine if they had been hacked. To
this end, it was advantageous to develop human behavior models
to investigate operator behavior patterns, both in the execution
of their primary task of supervising UAVs, and in attempting
to thwart hacking attempts. Such models could be particularly
useful as they could highlight training problems or interface de-
sign anomalies. Finally, such models could be used to develop
predictive decision support tools that could assist human oper-
ators, particularly under areas of high workload and stress. The
rest of this paper presents our efforts to develop strategy models
of humans supervising multiple UAVs and determining whether
a UAV had been hacked through human geo-location.

II. BACKGROUND

A. UAV GPS Spoofing Detection

Remotely controlled UAVs typically rely on an embedded
navigation system known as the GPS, which provides accurate
localization information including position, velocity, and time
for UAV GPS receivers. GPS receivers can calculate the precise
latitude, longitude, height, and speed based on received satellite
signals. However, GPS receivers are vulnerable to GPS spoof-
ing attacks, in which GPS receivers are attacked by counterfeit
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Fig. 1. Example of GPS reported locations on the map.

signals generated from GPS spoofers [10]–[14]. Many au-
tonomous GPS spoofing detection methods have been proposed
in recent studies [11]–[17]. However, false alarms and detection
failures still exist while applying autonomous GPS spoofing de-
tection [10], [11], [15]. Therefore, more research is needed to
improve autonomous detection systems.

UAVs are commonly equipped with both a GPS navigation
system and payload camera, whose signal is independent of the
UAV GPS signal. Thus, if these two signals are independent,
the payload camera view can be used as a reference to assist
autonomous detection systems in detecting UAV GPS spoofing
attacks. Based on the precondition that UAV payload camera
views can provide the unbiased surrounding scene of UAVs, we
propose that human operators can act as supplementary sensors
and assist autonomous systems to detect UAV hacking attacks
through the comparative human geo-location method.

In human geo-location, an operator can compare the nontam-
pered video feed from the UAV payload camera to the poten-
tially falsified GPS reported location on the map. This approach
allows operators to detect inconsistencies, which indicate poten-
tial hacking attacks, between the location interpreted from the
camera view and the GPS location reported on the map. In the-
ory, such cross referencing could be accomplished automatically
through autonomous localization and sensor-fusion techniques
(e.g., [18], [19]), but these have not been very successful [20],
particularly in military applications [21].

Based on feature integration theory, the first stage of human
vision obtaining information from targets is the preattentive

Fig. 2. Human supervisory multiple UAV control architecture [22].

stage, in which a human observer can gather basic information
about a target even before the observer becomes conscious of
it [4]. Thus, human vision can process target information effi-
ciently in complex environments. Human observers also tend
to choose areas that maximize information of the target in a
salience-driven visual search strategy [5]. In addition, the direc-
tion discrimination threshold of human vision has a low average
of 1.8 degrees [6], which suggests that human observers can
precisely detect small changes in target movement orientation.
Considering these human visual advantages, human operators
can potentially assist UAV localization and detect potential UAV
GPS spoofing attacks.

An example of human geo-location in UAV GPS spoofing
detection is shown in Fig. 1. The GPS-reported location of the
UAV is shown as the blue dome on the map in the upper right.
If the UAV is under attack, the operator will observe the scene
below the UAV through the camera, which would be different
from the surrounding environment of the GPS-reported location
on the map; e.g., as in the upper left camera-view in Fig. 1. If
the UAV is not under attack, the operator will observe the scene
below the UAV, as in the upper-right camera view in Fig. 1,
matching the reported location. When a GPS spoofing attack is
confirmed, the operator can prevent losing the hacked UAV by
overriding the physical controls.

B. Modeling Operator Behavior

The human geo-location approach to hacking detection is an
example of a common UAV control scheme which incorporates
human supervisory control, in which a human operator monitors
a multiUAV system, intermittently navigating UAVs, and con-
ducting other higher level tasks [23]. The hierarchical architec-
ture of a human supervisory UAV control loop of single operator
with multiple UAVs is shown in Fig. 2 [22]. In this architecture,
multiple parallel outermost loops represent the highest-level
control of managing missions and payloads by human opera-
tors. The inner loops represent lower level navigation and flight
controls by autonomous systems or operators. This architec-
ture can be introduced with various levels of automation. The
successful control of higher level operator loops depends on the
success of lower level autonomous system loops. In this study,
we assume that human operators keep higher level decision-
making processes, and autonomous systems are in charge of
lower level UAV control and navigation operations [22].
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Fig. 3. RESCHU-SA experiment platform interface [7].

In supervisory control settings where humans are supervising
one or more autonomous systems, human operator behavior
models are needed for multiple reasons:

1) To investigate general operator behavior patterns, in order
to determine if observed behaviors match the expected
behaviors;

2) To investigate operators’ strategies, in order to identify
points of inefficiency or error;

3) Study both endogenous and exogenous factors that impact
operator behavior patterns such as video game experience
and task load;

4) Study how automation can improve operators’ perfor-
mance and success rate in task performance, including
the use of predictive operator behavior models.

In terms of the hacking detection supervisory control setting
we consider, we need a way to determine strategies that operators
develop in their attempts to detect and mitigate hacking attempts,
and how to improve upon those strategies that could include the
use of automated decision support.

One problem with the generation of such models is that while
interactions between a human operator and a supervisory con-
trol system can be directly observed through human physical
interaction with an interface, such observations cannot be di-
rectly associated with a human thought, goal, plan, or strategy.
In order to develop operator models that link actions and be-
haviors to plans, goals, and strategies, we need a method that
abstracts low-level physical interface interactions into higher
operator behavioral states and strategies. We believe that a hid-
den Markov modeling approach provides the foundation to do
this, as described in the next section.

C. Markov Modeling Approaches

Markov models are widely used to capture stochastic
evolution of state transitions in the state-space [24]. Many
studies have used Markov models to investigate low-level
human actions [25], [26]. However, Markov models only

capture observable interactions between human operators and
control systems, which may not accurately reflect operators’
high-level behavioral states. Therefore, hidden Markov models
(HMM), which are an extension of Markov models, could be a
useful alternative in this regard.

An HMM is a two-layer stochastic model that describes a
Markov process with a higher layer of indirectly observable sys-
tem states and a lower layer of observable emissions from each
state. The HMM formalism is widely used in machine learning,
especially in speech recognition [27] and development of human
operator behavior models in driving [28]. HMMs using an unsu-
pervised approach to model training have been shown to provide
more accurate operator behavior models over supervised learn-
ing approaches [29], [30]. Because an HMM can present higher
level operator behavioral states using hidden system states based
on lower level operator interactions with a supervisory control
system like a UAV ground control station, the HMM was se-
lected as the modeling framework for this effort.

III. DATA GENERATION

In order to develop models of operator behavior in the UAV
supervisory control environment with potential hacking events,
user interactions with such a system were needed to provide
the underlying training data. To this end, we developed the
RESCHU-SA (now freely available to interested parties) [7],
[8], [31]. RESCHU-SA is a Java-based simulation platform for
a single operator with multiUAV supervisory control scenar-
ios. It provides the flexibility to design multitasking scenarios
including both navigational and imagery analysis tasks. More-
over, this platform provides the capability of simulating UAV
GPS spoofing attacks, in which hacked UAVs deviate from the
originally assigned paths and target unexpected destinations,
along with real or false notifications that simulate autonomous
GPS spoofing detection systems.

The interface of the RESCHU-SA platform is shown in Fig. 3.
Five main components are featured in this interface, including
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the payload camera view, message box, control panel, timeline,
and map area. Specifically, the camera view displays the video
stream of the surrounding environment beneath the selected
UAV. The primary purpose of this view is to conduct imagery
analysis tasks and can be used to determine the actual location of
UAVs for detecting potential hacking events. The map displays
the surveillance area with real-time locations of all UAVs, hazard
areas, and targets.

A. Experiment Design

To collect enough data to develop operator models, a set of
experiments was conducted using RESCHU-SA. The primary
objectives of operators using RESCHU-SA are to control
multiple UAVs to: 1) determine whether UAVs are under GPS
spoofing attacks; 2) perform reconnaissance imagery tasks of
counting road intersections when UAVs reach assigned targets;
and 3) ensure that UAVs do not encounter hazard areas.

Given that a previous study demonstrated that the task load
can significantly impact an operator’s performance, and thus
strategies [8], task load was the only controlled experimental
variable in this experiment. Two objective task load levels, high
versus low, were introduced, and each participant had both task
load scenarios in the experiment. In the low-task load scenario,
operators navigate three UAVs with six targets and six hacking
notifications, including three real hacking notifications and three
false alarms. In the high-task load scenario, operators navigate
six UAVs with nine targets and nine hacking notifications, in-
cluding five real hacking notifications and four false alarms. To
simplify the hacking detection, no notification miss was intro-
duced in the experiment that all real hacking events come with
notifications.

In RESCHU-SA, operators are responsible for safely navi-
gating UAVs to targets. Hazard areas can appear and disappear
randomly, which require replanning the vehicle around these
threat areas. In the experiment, GPS spoofing attack events with
notifications followed a predefined schedule but appeared to
randomly occur while an operator navigated the UAVs. Once
an operator received a notification that a certain UAV was un-
der possible cyber-attack, the operator could then investigate
the potential UAV hacking by checking the UAV camera view
and matching it against the position of the UAV on the map.
Although UAV position drifts may be caused by GPS degrada-
tion, we assumed that all position drifts were caused by GPS
spoofing attacks to simplify the hacking detection scenarios in
this experiment.

When UAVs that were not hacked reached a target, the opera-
tor engaged in an imagery task of counting the road intersections
from the UAV’s camera view at a prespecified zoom level. This
task represents the primary purpose of the mission, which is
information gathering. The imagery counting task was the par-
ticipants’ primary work load task, and it allowed us to assess
their performance based on the number of attempted tasks and
the task correctness percentage.

B. Experiment Subjects and Procedure

Thirty-six participants took part in this experiment, includ-
ing 22 males and 14 females. Age ranged from 19 to 34 years

Fig. 4. Histogram of the hacking detection success rate.

TABLE I
CONFUSION MATRIX OF HACKING DETECTION DECISIONS IN

DIFFERENT NOTIFICATIONS

with an average of 25.2 and a standard deviation of 3.8 years.
Among all participants, 18 participants had little video game
experience, six participants had monthly gaming experience,
five participants played video game several times a week, an-
other five participants had weekly gaming experience, and only
two participants had daily gaming experience. The experimental
procedure consisted of four main sections including a self-paced
tutorial section, a practice section, a test section, and a debriefing
section. Specifically, in the test section, each participant finished
two test sessions, including a counterbalanced high- and a low-
task load scenario. Thus, we had 72 test sessions and collected
data from all these sessions.

C. Experiment Results

In this experiment, 23 out of the total 72 test sessions (32%)
resulted in 100% successful hack identifications, while another
24 (33%) reached above 80% successful attack identification.
Thus, as shown in Fig. 4, 65% of total test sessions reached
80% correct hacking detection or better without having any
prior formal hacking detection training.

Specifically focusing on the difference between real hacking
notification and false alarms, as shown in Table I, out of all the
287 (224 + 63) real hacking notifications across all participants,
the overall success rate was 78% (224 ÷ 287), and for all the
247 (40 + 207) false alarms, the success rate was 84% (207 ÷
247). In other words, the type one error (false positive, operators
considered UAV not hacked with real hacking notification) was
22% (63 ÷ 287), which was slightly higher than the type two
error (false negative, operators considered UAV hacked with
false alarm notification) of 16% (40 ÷ 247). Thus, operators
were slightly better at detecting false alarms than identifying
real hacking notifications.
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Fig. 5. Boxplot of hacking detection success rate based on different video
game experience.

Task load, as a major experimental factor, only affected
UAV damage level (MANOVA F (1, 31) = 32.93, p < 0.001,
alpha = 0.05), but it did not affect any other performance
metric. However, the video game experience covariate had a
significant effect on participants’ correct hacking detections
(F (1, 31) = 4.652, p = 0.039), as shown in the boxplot in
Fig. 5. This means that the more the video game experience,
the higher the chance of a correct hacking detection. Not sur-
prisingly, seven participants who lost UAVs had no video game
experience, and the other five who lost UAVs ranged from little
to moderate gaming experience. Participants with daily gaming
experience did not lose any UAVs and were 100% correct in
hacking identification.

These statistical results of our experiment provide a high-
level understanding of the factors that impacted operator perfor-
mance. However, we need to further investigate the underlying
nature of why such factors had certain effects on performance.
In addition, operators’ hacking detection strategies cannot be in-
ferred via statistical results. Therefore, human operator models
are needed for further investigating operator behavior patterns
and detection strategies in such UAV supervisory control sce-
narios.

IV. HMM STRUCTURE, TRAINING, AND SELECTION

As discussed previously, human operator behavior models
can illustrate operator behavior patterns and strategies in high-
level tasks. Considering that HMMs can infer hidden higher
level operator behavioral states from observable lower level
interactions between the operators and autonomous systems,
HMMs were chosen for modeling the observable behaviors from
the RESCHU-SA experiment.

A. HMM Structure

Based on the classic notation of HMM, the HMM can be
formally defined as a tuple [32]

TABLE II
OBSERVATIONS (EMISSIONS) OF HMMS FROM RESCHU-SA

EXPERIMENT INTERFACE

H = {S, V,A,B}.

Here, S = {S1 , S2 , ..., SN } represents N different hidden
states, V = {V1 , V2 , ..., VM } represents M different obser-
vations. Also, A = {aij} is an N × N transition probabil-
ity matrix, where aij = P{St+1

j |St
i }, i, j = 1, 2, ..., N , and

B = {bik} is an N × M emission probability matrix, where
bik = P{Vk |Si}, i = 1, 2, ..., N , k = 1, 2, ...,M . In addition,
both aij , bik ≥ 0. In HMMs, each hidden state can be consid-
ered as a cluster of observations with different weights, which
are emission probabilities. The system states (or operator behav-
ioral states, in this paper) transfer among hidden states based on
the time sequence, and the probabilities of switching from the
current state to the next state are the transition probabilities.

B. HMM Training and Selection

The first step in the HMM training process is state space re-
duction. In RESCHU-SA, every key stroke and mouse action
were recorded in log files, along with the system status. In an
HMM, the hidden higher level behavioral states are clusters of
operator actions, so the interaction data should be aggregations
of observations based on a predefined state reduction grammar.
In this manner, there were 12 possible places for operators to
click in RESCHU-SA, which yielded 12 observations, as pre-
sented in Table II.

The multisequence Baum–Welch algorithm, an unsupervised
model training method, was used in model training [33]. HMM
training results were then selected (number of hidden states)
using the Bayesian information criterion (BIC) [27], [34] and
the number of rare states (NRS) method [35] to achieve both
high model likelihood values and reasonable model structures.
Models with the lowest BIC values are preferred. The BIC bal-
ances the increase of model complexity, which is caused by
the increase of the model features, by penalizing the number
of free parameters in the model training process. The NRS
method maintains the simplicity and interpretability of a de-
scriptive model by monitoring all rare states whose occurrence
frequencies are lower than a certain threshold value, which is
usually 5%. Generally, HMMs without any rare state are pre-
ferred. When BIC curves are monotonically decreasing, the NRS
method can suggest the model with the highest number of hidden
states without any rare state.
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Fig. 6. General human operator behavior HMM.

Fig. 7. Emission probabilities for the HMM capturing general operator be-
havior.

V. GENERAL OPERATOR BEHAVIOR MODEL

Understanding that task load did not affect operators’ overall
performance and success rate in hacking detections and imagery
tasks, the general operator behavior model was trained using
data from both high- and low-task load scenarios. As shown in
Table II, the general operator behavior HMM was trained using

observation sequences with 12 different observations. Based on
the model selection process described previously, the HMM
with seven states had the lowest BIC value. Also considering
that the 7-state model did not have any rare states and the HMMs
with eight or more states had at least one rare state, the general
operator behavior model was determined to be a 7-state HMM,
as shown in Fig. 6. The interpretation for each hidden state was
determined by the emission probabilities, shown in Fig. 7.

The first state was interpreted as “Manipulate target” because
it was mainly a cluster of observation 4 (Move endpoint), 5
(Switch target), and 7 (Select UAV), which were directly related
to UAV target manipulations. The second state was interpreted
as “Hacking detection” because this was the only state that
had significant emission to observation 12 (Adjust zoom level),
which indicated the typical operation of using a UAV’s camera
to compare against the map. The third state was interpreted as
“Select UAV” because its only major emission was observation
7 (Select UAV). The fourth state was interpreted as “Manipulate
waypoint” because it was a cluster of observation 1 (Add way-
point), 2 (Move waypoint), 3 (Delete waypoint), and 7 (Select
UAV), which were directly related to waypoint management.
The fifth state was interpreted as “Engage imagery task” be-
cause its only major emission was observation 6 (Engage task),
indicating that people were executing the intersection count-
ing task. The sixth state was interpreted as “Hacking decision”
because it was the only state that had major emissions to obser-
vation 10 (Consider UAV hacked) and 11 (Consider UAV not
hacked) which were decisions to hacking events. The seventh
state was interpreted as “Initiate hacking detection” because it
was the only state that had emissions to observation 8 (Con-
firm notification) and 9 (Ignore notification) which indicated
the initiation of hacking detection.

The general operator behavior model represents the opera-
tor behavioral states in navigating UAVs, conducting imagery
search, and dealing with potential hacking events. The first
interesting fact shown in the model is that the UAV naviga-
tion (highlighted in blue) and hacking detection (highlighted in
orange) functional groups can be distinguished clearly. The tran-
sitions between these two functional groups represent the prob-
abilities of switching functional groups in operator behavioral
states. This distinction shows that operators typically conducted
tasks either in UAV navigation or hacking detection, reflecting
that operators were switching between two primary objectives
of navigating the UAVs and detecting hacking.

Interestingly, a previous study on the original RESCHU plat-
form, which only dealt with the navigation of UAVs and did
not have any hacking considerations [30], exhibited just four
similar states to those blue states in Fig. 6. This is an important
finding since it means that the addition of a new set of tasks did
not dramatically change the underlying states, rather the added
functionality of hacking detection simply added more states.
This suggests that at least in some supervisory control environ-
ments, functions may be modeled in a modular fashion, which
would reduce the workload in adapting older models as new
functions are added.

In addition, the general RESCHU-SA model in Fig. 6 shows
some potential inefficiencies in operator behavior patterns. In
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TABLE III
OBSERVATIONS (EMISSIONS) OF THE HACKING DETECTION STRATEGY HMM

FROM RESCHU-SA EXPERIMENT INTERFACE

the navigation functional set of states, the first state of “Ma-
nipulate target” and the fourth state of “Manipulate waypoint”
have high self-transition probabilities. These high self-transition
probabilities indicate that once operators entered these two be-
havioral states, operators tended to conduct repeated operations.
For instance, the participant who repeated manipulating targets
the most (91 times compared to the average of 35 times), was
enmeshed in the “Manipulate target” state and actually had a
low overall performance score of 236 (compared to the average
of 303). These repeated operations indicate potential inefficien-
cies that could be improved with future designs for the UAV
supervisory control interface.

Two hidden states, “Hacking detection” and “Initiate hack-
ing detection,” in the hacking detection functional group also
revealed potential problems with self-transitions. Based on sta-
tistical analyses, the time consumption in hacking detection was
negatively correlated with the hacking detection success rate
(Pearson = −0.375, p = 0.001). Thus, this fact implies that the
longer the person spent investigating a potential hacking event,
the less likely a successful detection would occur. This result
was curious because as people gather more information, they
should increase their probability of successful detection. These
results then led us to develop more detailed HMMs about just
operator hacking detection strategies in order to shed more light
about this unexpected result. These more specific HMMs are
detailed in the following section.

VI. HACKING DETECTION STRATEGY MODEL

The HMM in Fig. 6 provides an overall view into how op-
erators approached the overall tasks of navigating the UAVs in
support of their primary reconnaissance missions, while also
dealing with hacking events. However, since this model does
not provide enough detail about just how exactly people formed
strategies for dealing with the hacking events, we elected to
focus on those operator interactions from the beginning to the
end of each hacking event. Overall, there were 15 such hacking
events per participant. The resulting hacking detection model
was trained based on ten observations instead of the original
12 observations, as shown in Table III. In the revised model
training, original observations of “Confirm notification” and
“Ignore notification” were combined to “Perceive hacking,” and
“Consider UAV hacked” and “Consider UAV not hacked” were
combined to “Detection decision.”

Fig. 8. Operator hacking detection strategy model.

Fig. 9. Emission probabilities of the hacking detection strategy model.

As shown in Fig. 8, the obtained hacking detection strategy
model is a 6-state HMM based on the similar model selec-
tion process as used for the general operator behavior model.
The interpretation for each hidden state was determined by the
emission probabilities shown in Fig. 9. Although the obser-
vations were slightly different, the interpretation criteria were
similar to the general behavior model. The six hidden states
were interpreted as: 1) the start state of “Perceive Hacking”; 2)
“Select UAV”; 3) “Adjust target”; 4) “Engage imagery task”; 5)
“Adjust waypoint”; and 6) the end state of “Hacking decision.”
The 56.8% transition from the END state to the START state
represents overlapping hacking detections. This means once op-
erators finished a hacking detection, roughly half the operators
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Fig. 10. Master participant strategies in hacking detection strategy model.

then went on to solve another hacking event that occurred almost
coincidentally with the current event.

A. Hacking Detection Strategies

Two major behavioral state transitions (also known as op-
eration flows) in the hacking detection HMM can be observed
based on transition probabilities, as shown in Fig. 10. Such tran-
sitions are considered as detection strategies because they start
from the START state, in which operators perceived hacking
events, to the END state, in which operators determined de-
tection results. The first major flow, indicated by blue arrows,
has one single intermediate state of “Adjust waypoint” between
the start and the end state. The second major flow, indicated by
red arrows, has two intermediate states of “Adjust target” and
“Select UAV” between the start and the end. These two major
operation flows suggest two dominant hacking detection strate-
gies, termed “waypoint-oriented strategy” and “target-oriented
strategy.”

In the waypoint-oriented strategy, operators tended to manip-
ulate UAV waypoints, including adding and moving waypoints,
to detect hacking events. In this hacking detection strategy, to in-
vestigate the potential differences in the scene between the cam-
era view and the surrounding map area, operators typically either
manipulated or introduced waypoints. Operators who used this
strategy typically fixated on comparing the effects of turning
the UAV and the appearance of the ground in the camera feed
to that expected while turning on the map. This can be con-
sidered a dynamic strategy as motion was a key element in the
determination of location.

In the target-oriented strategy, operators tended to directly
switch UAV targets to detect hacking events. In this strategy,
operators were typically focused more on the specific landmarks
that the UAVs would fly over, such as unusual intersections or
buildings. This can be considered a static strategy as operators
would wait until the UAV reached a place of interest to make

TABLE IV
PARTICIPANT CLASSIFICATION BASED ON DIFFERENT HACKING

DETECTION STRATEGIES

a hacked or not hacked decision. Both strategies revealed in-
efficiencies, primarily through the self-transition probabilities.
For example, in the waypoint-oriented strategy, 62% of people
stayed in this state, repeatedly adding, moving, and deleting
waypoints. Similarly, 37% of people repeatedly redirected ve-
hicles to other targets, suggesting an inefficient target selection
process. These actions suggest inefficiencies that potentially
could be made better with advanced decision support, which is
an area of future work.

The occurrence frequency and percentages of the waypoint-
and target-oriented strategies for each participant was obtained
by applying the hacking detection HMM to each participant’s
data using the Viterbi algorithm [27]. Based on the occurrence
percentage of the adjust waypoint and adjust target states, par-
ticipants were classified into different hacking detection cate-
gories. As shown in Table IV, participants were classified into
four categories: 1) waypoint strong dominant strategy; 2) way-
point weak dominant strategy; 3) target weak dominant strategy;
and 4) target strong dominant strategy. The population of each
strategy category was approximately one-fourth the total partic-
ipant population.

Another repeated-measure multivariate ANOVA model with
a significance level of 0.05 was used to analyze the impact of dif-
ferent hacking detection strategies on participant performance
and hacking detection success rate. In this rm-MANOVA model,
strategy categories were considered as a between-subject factor.
The rm-MANOVA model showed that different hacking detec-
tion strategies did not affect the overall participant performance
(F (3, 27) = 0.754, p = 0.530), their hacking detection success
rate (F (3, 27) = 0.086, p = 0.967), and their imagery counting
task success rate (F (3, 27) = 1.528, p = 0.230). Thus, when
examining the aggregate group, no strategy dominated in terms
of performance. However, given that the only operator who had
perfect performance were the two operators with daily game
experience, we examined their strategies in detail in the next
section to shed more light on which strategies could potentially
produce the best outcomes.

B. Master Participant Hacking Strategies

Developing separate HMMs for the two master participants
was not possible due to the limited data; however, operator state
paths can provide a map of individual strategies. As shown
in Fig. 10, the two dominant hacking detection strategies are
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highlighted separately to represent the two master participant
strategies. The red path represents the first master participant’s
operation flow and the blue path represents the second master
participant’s operation flow.

As depicted in Fig. 10, the master participants represented the
two dominant strategies shown in the hacking detection model of
Fig. 8. The first master participant exhibited the target-oriented
strategy, spending an average of 81.1 s in each hacking detec-
tion (overall average for target-dominant people was 100.3 s).
The second master participant exhibited the waypoint-adjusted
strategy, spending an average of 50.5 s in each hacking detection
(overall average for waypoint-dominant people was 81.8 s). The
two master participants demonstrated the two dominant strate-
gies shown in the model for all participants and both master
participants achieved 100% detection, so there is no clear dom-
inant strategy in terms of quality of final decision. However,
there was a clear difference in speed with the waypoint-oriented
strategy taking, on average, 30 s less to accomplish, which can
be seen in the two strategies in Fig. 10 where the target-oriented
strategy has an additional state. This is a practically significant
number as intervening as quickly as possible in the middle of
a hacking event is paramount. So, while this analysis reveals
no dominant strategy in terms of detecting a hacking event, it
does suggest that the waypoint-oriented strategy is likely to lead
to faster results, which could be very important in prosecuting
actual events.

VII. CONCLUSION

The human operator behavior models in this study present the
feasibility of investigating operator behavior patterns and strate-
gies in conducting supervisory control tasks through the use of
HMMs. From operator behavior models, we can investigate fac-
tors that potentially impact operator behavior patterns and their
higher level strategies. Observed strategies from a single HMM
can provide engineers and researchers a practical approach to
investigating human operators’ strategies in human supervisory
control scenarios.

The general behavior model, derived using RESCHU-SA-
based experiments, shows seven major human operator behav-
ioral states for supervision of UAVs that could be subject to
hacking events. In this model, two functional groups emerged,
including a hacking detection group with three behavioral states
and a UAV navigation group with four states. Operators gener-
ally switched between functional groups as demands dictated,
i.e., when a hacking event emerged, operators moved from the
navigation flow to the hacking flow, indicating that such func-
tions could be seen as modular.

A 6-state hacking detection strategy model allowed us to in-
vestigate operator hacking detection strategies in detail. Two
major strategies can be observed from the model, including
waypoint-oriented and target-oriented strategies. Based on sta-
tistical results, different hacking detection strategies did not af-
fect operators’ overall performance and success rate in hacking
detection. Although no single best hacking detection strategy
emerged in terms of quality, one strategy was superior in terms
of the time to correct decision.

Although this geo-location approach for UAV hacking de-
tection is still in an experimental stage, these initial results
suggest that such an approach could enhance the security of
future supervisory UAV control systems if hacking notifications
are provided. Considering that no hacking notification misses
were introduced in this experiment, as a future study we will
investigate the potential effects on operators’ performance and
detection strategies if the autonomous system fails to provide no-
tifications. In addition, certain limitations still exist in our HMM
method, including limited model training data and required ex-
perimenter subjective judgment in hidden state interpretation,
which is a fundamental issue for all unsupervised machine learn-
ing approaches. Current research is underway to determine how
to make such model interpretation more straightforward as well
as improve sensitivity analysis methods to reveal weaknesses in
employed assumptions.

These descriptive operator behavior models highlight the fact
that even effective strategies can be inefficient. Further work is
needed to determine why people adopt different strategies and
whether additional assistance can be used to improve operator
strategies, either through training or a decision support system.
Finally, the development and utilization of predictive behavior
models can contribute to the future development of real-time
guidance systems, which monitor operators constantly and pro-
vide real-time operational guidance.
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